Automating Al Research

Doctoral Dissertation submitted to the
Faculty of Informatics of the Universita della Svizzera italiana
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by
Louis Kirsch

under the supervision of

Prof. Jirgen Schmidhuber

June 2025

Dissertation Committee

Prof. Jeff Clune University of British Columbia, Canada

Prof. David Silver University College London, United Kingdom
Prof. Frank Hutter Albert-Ludwigs-Universitat Freiburg, Germany
Prof. Natasha Sharygina Universita della Svizzera italiana, Switzerland
Prof. Cesare Alippi Universita della Svizzera italiana, Switzerland

Dissertation submitted on 19 March 2025
Accepted on 3 June 2025
Final revision on 17 December 2025

Research Advisor PhD Program Director

Prof. Jirgen Schmidhuber Prof. Walter Binder/ Prof. Stefan Wolf

| certify that except where due acknowledgement has been given, the work pre-
sented in this thesis is that of the author alone; the work has not been submitted
previously, in whole or in part, to qualify for any other academic award; and
the content of the thesis is the result of work which has been carried out since

the official commencement date of the approved research program.

Louis Kirsch
Lugano, 3 June 2025

Abstract

A core element of Artificial General Intelligence (AGl) and ultimately Artifi-
cial Superintelligence (ASI) is the ability of Al to improve itself, including its
own learning algorithm. This single capability, once developed by human re-
searchers, could initiate an autonomously self-improving system capable of in-
dependently conducting all subsequent research. Toward this vision, this thesis
advances the automation of Al research by developing methods for Al systems
to discover general-purpose learning algorithms.

Today, machine learning (ML) research still relies heavily on human-designed
learning algorithms, architectures, losses, optimizers, data, and other compo-
nents. This process requires significant manual effort and the selection of ap-
propriate inductive biases, limited by human creativity and knowledge. Meta-
learning, or learning-to-learn, instead aims to automate the process of artificial
intelligence (Al) research and promises to unlock greater capabilities with less
manual effort.

In recent years, meta-learning has made significant progress in producing models
that can learn very quickly from a few examples using in-context learning, fast-
weights, and optimization-based methods. This tremendously helps in adapting
to new, similar problems, but it does not automate Al research itself.

To address this limitation, we introduce meta-learners that discover general-
purpose learning algorithms. The goal is the discovery of novel learning al-
gorithms that can be reused across a wide range of tasks, similar to human-
engineered learning algorithms. We present several novel methods addressing
meta-generalization, including learned loss functions, weight-shared LSTMs that
implement gradient descent in their recurrent dynamics, and black-box Trans-
formers that learn how to in-context learn generally.

The main contributions include MetaGenRL, a novel off-policy gradient-based
meta-RL algorithm that, for the first time, discovers general-purpose learning al-

gorithms with high performance on diverse robotic control tasks. Our Variable
Shared Meta-Learners (VSML) make use of parameter sharing and sparsity in
meta-learning to automatically discover powerful in-context learning algorithms
that neither require explicit gradients at meta-test time nor weight updates. Next,
we introduce SymLA, a method that builds on the neural network symmetries
of VSML to improve the generalization of learning algorithms in meta-RL. In
our general-purpose in-context learners (GPICL), we discover phase transitions
where models transition from memorization to task identification, to general
learning-to-learn. We identify crucial ingredients such as memory capacity and
practical interventions in meta-training. We explore how these insights can
be applied to meta-RL in generally learning agents (GLAs). Our results show
that meta-learning is a powerful approach for generating general-purpose learn-
ing algorithms that can be effectively transferred to new and unseen environ-
ments.

Finally, we seek Al to self-improve while minimizing its dependence on human
engineering. To this end, we explore self-referential systems that can recursively
improve themselves without hard-wired meta-optimization. We extend this idea
to Al scientists, large language models that can automate Al research by gener-
ating hypotheses, conducting experiments, and interpreting results.

Preface & Acknowledgements

Automating Al Research is humanity’s final task.

The automation of Al research will be the last invention humanity ever needs to
make. All other inventions will be made by Al itself. Throughout my research
career, | have been fascinated by this idea. The rapid progress in this field is
truly astounding. In just a few years, we've witnessed breakthroughs ranging
from automating the discovery of new RL algorithms and general-purpose in-
context learning to the early steps of automating science with large language
models. When | started my PhD, the idea of fully automating Al research felt
like a distant dream. Today, it seems within reach.

| feel honored to have made ambitious contributions to this final task and to
have worked with one of the pioneers in the field, Jiirgen Schmidhuber. There
is one particular quote from Jiirgen that has always resonated with me:

Since age 15 or so, the main goal of professor Jiirgen Schmidhuber
has been to build a self-improving Artificial Intelligence (Al) smarter
than himself, then retire.

The day will come when we can all retire, and Al can take over the task of
improving itself.

| would like to thank all my co-authors, collaborators, and friends who have
made this journey so joyful. Special thanks to Jirgen Schmidhuber, Sjoerd
van Steenkiste, Francesco Faccio, Alexander Stanic, Vincent Herrmann, Aditya
Ramesh, Anand Gopalakrishnan, Imanol Schlag, Paul Rauber, Chris Lu, Ry-
lan Schaffer, James Harrison, Luke Metz, Jascha Sohl Dickstein, David Ha, Jeff
Clune, Luisa Zintgraf, Akarsh Kumar, Yutian Chen, and Klaus Greff. Also, |
would like to extend my gratitude to my family for their unwavering support and
encouragement.

Vi

This thesis is based on several publications and reports [Kirsch et al], 2020b;
Kirsch and Schmidhuber, 2021, Kirsch et all, 2022a; Kirsch and Schmidhuber,
2022a; Kirsch et all, 2022b, 2023]. Louis” work was supported by the ERC Ad-
vanced Grant (no: 742870) and computational resources by the Swiss National
Supercomputing Centre (CSCS, projects s978, s1041, and s1127) [Kirsch et al,
2019; Kirsch and Schmiduber, 2020, 202T]. We also thank NVIDIA Corpora-
tion for donating several DGX machines as part of the Pioneers of Al Research
Award, IBM for lending a Minsky machine, and weights & biases [Biewald,
2020] for their great experiment tracking software and support.

Contents

Contents

L

Introduction

1.1 Automating Al research

(1.2 Background & Relatedwork
[1.2.1T A description of meta-learning on multiple timescaleg
[1.2.2 Parameterizing gradient-based learning algorithmg .
[1.2.3 Updating weights through fast weight programmers . . .
[1.2.4 In-context learning with black-box neural networks . . .
[1.2.5 Architectures and hyperparametery.
[1.2.6 Symbolic search spaces and programmers
[1.2.7 Recursive selt--improvement{

1.3 Contributionsand keyi1deas

MetaGenRL: Meta-learning gradient-based RL algorithms that

2.1 Introduction s
2.2 Prellmnaries
2.3 Meta-Learning neural objectivey

2.3.1 From DDPG to gradient-based meta-learning of neural

[2.3.2 Parametrizing the objective tunction
2.3.3 Generality and etticiency ot MetaGenkL
2.4 Relatedwork
2.5 Experimenty
2.5.1 Comparison to priorwork
2.5.2 Analysi§
2.6 Conclusion e

vii

vii

N Ul — =

12
12
13
14

viii Contents

.7 Follow-upwork 34
B VSML: Meta-learning backpropagation and improving I 37
B.T Introduction 37
B.2 Background 39
3.3 Variable Shared Meta Learning (VSML) 40
B.3.1 Meta-learning general-purpose learning algorithms from
........................... 46
3.3.2 Learning to implement backpropagation In RNNg 47
B.4 Experimentyo 47
B3.4.1 VSML RNNs can implement backpropagation 48
1b.4.2 Meta learning supervised learning from scratch 49
3.4.3 Robustness to varying inputs and outputy 50
B.44 Varyingdatasetd 50
3 A [52
B.6 Relatedwork 54
B.7 Discussion and limitationy, 55
3.8 Conclusion 56
B.9 Follow-upwork 57

4 SymlLA: Introducing symmetries to in-context reinforcement learning 59

#.T Introduction 59
B.2 Preliminaried 61
B.2.T Reinforcementlearnind 61
k.2.2 Meta Reinforcement Llearning 61
#.3 Symmetriesinmeta-RLl o000 63
“.3.1T Symmetries in backpropagation-based meta-RL| 63
“.3.2 Insutficient symmetries in black-box meta-RL 64
4.4 Adding symmetries to black-box meta-RLl 65
d.4.1 Variable Shared Meta Learning 65
“.4.2 RL agentinputsandoutputy 66
“.4.3 Architecture recurrence and reward signal 67
B.4.4 Symmetriesin SymILA 67
B.45 Tearning/Innerfoop 68
d.4.6 Meta-Learning/ Outerloop. 69
B.5 Experimenty 69
“.5.1 Learning to learn on similar environmenty 69
4.5.2 Generalisation to unseen action space§ 70

4.5.3 Generalisation to unseen observation space§ 71

ix Contents
4.5.4 Generalisation tounseentasky 72
4.5.5 Generalisation to unseen environmenty 73
.6 Relatedwork 74
4.7 Conclusion e 75
B8 Follow-upwork 76

b GPICL: How and when general-purpose in-context learning emerges in

77
b.T Introduction 77
b.2 Background 79
5.3 General-Purpose In-Context Learning 80
5.3.T Generating tasks for learning-to-learn 80
b.3.2 Meta-learning and meta-testing 82
5.4 Experiments on the emergence of general learning-to-learn. . . 82
5.4.1 Large data: Generalization and algorithmic transitiony . 85
5.4.2 Architecture: Large memory (state) is crucial for learningd 87
5.4.3 Challenges in meta-optimization 88
b.4.4 Domain-specific and general-purpose learning 91
b.5 Relatedwork 92
b.6 Limitationsg 94
b.7 Conclusion o 94
GLAs: Towards black-box & general-purpose in-context learning agenty 97
b.T Introduction 97
b.2 Meta-learning general-purpose in-context learning agenty 99
b.3 Experimentd 102
b.4 Conclusion 105
FME: Eliminating meta-optimization and recursive self-improvement 107
7.1 Introduction 107
[7.2What is needed for recursive self-improvement (RSI)q 109
[7.2.1 Partially or tully selt-referential architectured. 109
[7.2.2 SubstratesforRSIl 111
[7.2.3 How to construct a fully self-referential architecturd. . . 112
[7.3 Method: Fitness Monotonic Execution 113
74 Experimentd 116
75 Relatedword 118
7.6 Discussion e 119

7.7 Conclusion 122

X Contents

B What’s next: Leveraging LLMs to automate Al research 123
P Conclusion 129
A" Appendix on MetaGenRIl 133
A.T Additionalresulty 133
IA.1.T All training and testregimes 133

A.1.2 Stability of learned objective tunctiong 135

[A.T.3 Ablation of agent population size and unique environmentd137

[A.2 Experimentdetaild., 140
IA.2.1 Neural objective tunction architecturg 140

A.2.2 Metatraining 141

A.2.3 Baselined 142

B Appendix on VSMI| 145
B.T Derivationy e 145
B.2 Additional experimenty, 147
b.2.1 Learning algorithm cloning 147

b.2.2 Meta learning from scratchy 148

B.3 Othertrainingdetaild 155
B.3.T TLearning algorithm cloning 156

B.3.2 Meta learning from scratchy 156

B.4 Other relationships to previousworll 159
B.4.T VSML as distributed memory| 159

B.4.2 Connection to modular learning 159

B.4.3 Connection to seli-organization and complex systemg . 160

IC Appendix on SymlLA 161
[C.T Bandits from Wangetal. [207T6] 161
[C.2 Hyperparametery 162
IC.2.T SymLA architecturd 162

IC.2.2 Metalearning/outerlood 162

C.2.3 Generalisation to unseen environmenty 163

[C.3 Scalability and complexity 163
[C4 Codesnippetl 164

D Appendix on GPICI 167
D.T Summaryofinsightd. 167
D.2 Limitationy 168

D.3 The transition to general learning-to-learn 168

Xi Contents

D.4 Architectural details and hyperparametery 169
D.5 Experimentaldetail. 170
D.6 Additional experimenty, 172
E Appendix on FMH 185
E.T Implementationdetails 185
I List of contributions 187

Bibliography 191

xii

Contents

Chapter 1

Introduction

1.1 Automating Al research

It has long been a dream of computer scientists to build machines capable of per-
forming any cognitive task that a human can do [LeibniZ, 1666; Turing, 1950],
often referred to as Artificial General Intelligence (AGI) [Legg, 2008; Goertzel,
2014]. An even more ambitious goal is to create systems that surpass human ca-
pabilities, termed Artificial Superintelligence (ASI) [Schmidhuber, [1987; Morris
et al], 2023]. While the current literature often focuses on achieving or surpass-
ing the wide range of human capabilities, this thesis takes a different perspective.
We argue that the core ingredient of AGl and eventually ASI is the ability of Al
to improve itself, including its own learning algorithm. If Al cannot improve it-
self, it will always be limited by the abilities of human researchers and can thus
hardly be considered general. Conversely, if Al can improve itself, it might be
the only capability that human researchers need to develop. All other capabili-
ties can then be discovered by the Al itself through self-improvement, setting off
an open-ended process of innovation. Such a self-improving system could then
be considered an ASI.

To date, advances in machine learning (ML) are generally driven by human
research and engineering [Ivakhnenko and Lapd, 1965; Schmidhuber, 20T5;
Silver et all, 2016]. This can be viewed as a human-driven open-ended pro-
cess [Schmidhuber|, [1997; Lehman and Stanley, 2011]; Schmidhuber, 2013; Stan
ley, 2019] that continually creates new improvements, such as novel learning
algorithms. At the same time, this process requires significant manual effort and
the ability of researchers to choose appropriate inductive biases. Therefore, the

2 1.1 Automating Al research

Manual Al Improves Solves Tasks &
Research Human-engineered == ===== Environments
Learning Algorithm Feedback

\/

Performs

P (Seifimproves Solves Tasks &
Research SR € =-====== Environments
Learning Algorithm Feedback

Figure 1.1: How can we automate the process of Al research? Conventionally
the field of machine learning manually devises new methods to learn better pre-
dictors and agent behaviors from data. In this thesis, we investigate methods to
apply this process to research itself, in effect automating the research process.
Two important topics of interest are (1) how reusable the automatically discov-
ered learning algorithms are, i.e. how well they generalize, and (2) how we can
minimize the fixed inductive biases that are hardcoded into the system.

resulting ML systems are inherently limited by the ability of humans to under-
stand and analyze the properties and behavior of the learning system.

Meta-learning aims to automate this research process (Figure 1.7). Its goal is to
learn the learning algorithm (LA) itself, reducing the burden on the human de-
signer to craft useful learning algorithms [Schmidhuber|, 1987; Hochreiter et all,
2001]; Clune, 2019; Hutter et all, 2019]. As learning, we describe a process
that improves a model or agent behavior based on demonstrations, new obser-
vations, or feedback signals such as labels in supervised learning or rewards in
reinforcement learning (RL). Such data must not be human designed, but can
be generated by another automated system, or the agent itself in an unsuper-
vised fashion. A key requirement for learning is an unknown or change in the
environment or data distribution that warrants adaptation. In RL, learning is ev-
ident as an increase of the policy’s expected return over time (return velocity).
Meta-learning then corresponds to optimizing this process to iteratively increase
the return velocity (resulting in return acceleration) [Schmidhuber et al., [1997].
Meta-learning is not limited to the automated discovery of the update rule of a
neural network but may include architectural changes, training data changes, or

3 1.1 Automating Al research

Few-shot
meta-learners

Env Distribution A Env Distribution B Env Distribution C

' ' '
Meta Learner A Meta Learner B Meta Learner C
— Learning Algorithm A — Learning Algorithm B — Learning Algorithm C

Env Distribution

'

'

'

' Generalize
Meta Learner

— General-Purpose Learning Algorithm

General-purpose
meta-learners

Figure 1.2: From few-shot to general-purpose learning-to-learn. Human-
engineered learning algorithms are general-purpose in the sense of being ap-
plicable across a wide range of environments or tasks. This is not the case for
most meta-learning approaches, often referred to as few-shot learners, that are
good at learning very quickly on a specific distribution but do not generalize
well. In contrast, general-purpose meta-learning is about automatically discov-
ering novel learning algorithms that generalize broadly.

entirely other substrates of Al. In this thesis, we mainly focus on the former.

A common setup is to meta-train across several tasks or environments, the meta-
training distribution, to successfully learn on unseen environments. These un-
seen tasks or environments correspond to the meta-test distribution.

Towards more general-purpose meta-learning Recent meta-learning has fo-
cused primarily on generalization from training tasks to similar test tasks, e.g.,
few-shot learning [Finn et all, 2017], or from training environments to similar
test environments [Houthoott et al], 20T8]. While this approach can lead to very
efficient learning algorithms, generalization to novel, significantly different prob-
lems is quite limited. This contrasts with human-engineered LAs that generalize

4 1.1 Automating Al research

Relying on the data distribution

Less structure More structure
P | | | | | .
N | | | | | o
Black-box Black-box with Grad-based w/ Grad-based w/ Learned
param-sharing &| learned objective learned init optimizers
MetaRNN, RL2, symmetries
GPICL MetaGenRL, LPG MAML Metz et al
VSML, SymLA

In-context learning

Figure 1.3: Methods for (general-purpose) meta-learning can be classified along
a continuum, from those with strong meta-test inductive biases to those that
are more data-driven. We propose various methods on this continuum, as un-
derlined in the figure. Methods with more structure enable leveraging known
insights from hand-crafted learning algorithms, whereas approaches with fewer
inductive biases may automatically discover more expressive learning algorithms
while still generalizing to significantly different problems.

across a wide range of datasets or environments. Without such generalization,
meta-learned LAs cannot entirely replace human-engineered variants.

We propose an area of research that we refer to as general-purpose meta-
learning, in which the objective is the meta-learning of expressive and novel
general-purpose learning algorithms (Figure 1.2). This includes our recent work
MetaGenRL and the work of others [e.g. Alet et all, 2020; Oh et all,
2020; Xu et all], 2020], which demonstrate that meta-learning can successfully
generate more general reinforcement learning (RL) algorithms that generalize
across a wide spectrum of environments, e.g., from toy environments to Mu-
joco and Atari. These approaches, however, still rely on a large number of
human-designed and unmodifiable inner-loop components, such as backprop-
agation. Our later work, VSML [Chapter 3, does away with this dependency
and shows that the backpropagation algorithm can be encoded in the activa-
tion spreading of parameter-shared (recurrent) neural networks, now referred
to as in-context learners [Brown et al], 2020]. This enables the discovery of
novel general-purpose learning algorithms for supervised learning without the
use of hard-coded backpropagation. We also discuss the close relationship be-
tween updating NN activations and weights, relating it to fast weight program-
mers [Schmidhuber, 1992b, 19934]. Based on VSML, in SymLA [Chapter 4, we
discuss how symmetries in the parameterization of reinforcement learning poli-

5 1.2 Background & Related work

cies can help aid in the discovery of more general-purpose learning algorithms.
GPICL and GLAs demonstrate that the inductive bias of pa-
rameter sharing can also be removed under certain conditions. As one increases
the number of tasks that are meta-trained on, the model undergoes multiple al-
gorithmic transitions in terms of its behavior, from multi-task learning, to task
identification, to general learning to learn. Our contributions can be catego-
rized along a continuum from inductive biases to more data-driven approaches,

as visualized in Figure 1.3.

Towards reducing our reliance on human-engineered meta-optimization De-
spite these advances in automation, meta-learning creates a dependency
on human engineering at the meta-level, where meta-learning algorithms
must be designed. In principle, one could also meta-meta-learn this meta-
algorithm [Schmidhuber, 1987, 1993] but would still be left with some human
engineering. In the optimal case, the human-engineered biases are minimized
to the largest extent possible and rely on self-improvements from data or envi-
ronment interaction to automatically develop better learners, meta-meta learn-
ers, and so on in a recursive and self-referential fashion [Schmidhuber et al],
1997; Schmidhuber, 2007]. To this end, we propose neural self-referential
meta-learning systems that modify themselves without the need for explicit meta-

optimization [Kirsch and Schmidhuber, 2022b] in [Chapter 7.

In-context learning gives rise to automating scientific research in language
space Language-based in-context learning creates another level of meta-
learning — performing scientific research by writing code for experimentation
and reasoning about hypotheses very much like a human scientist. This opens
up the possibility of automating the scientific research process as a whole, in-
cluding the generation of hypotheses, the design of experiments, and the in-
terpretation of results. We refer to this as an Al Scientist, discussed in Chap]

0.

1.2 Background & Related work

To automate machine learning research, researchers in the fields of meta-
learning [Schmidhuber, T987; Bengio et al), [1991]] and AutoML [Hutter et all,
20719] have developed a wide range of methods. These methods differ primarily
in two aspects: the search space, which describes the kinds of ML systems that
can be discovered, and the meta-optimizer, which determines how this search

6 1.2 Background & Related work

space is navigated. For the search space, popular choices include the automated
discovery of hyperparameters, architectures, gradient-based loss functions, ini-
tializations, symbolic computation graphs, code, natural language, or entirely
neural approaches through weight or memory updates. For the meta-optimizer,
options broadly include evolutionary methods (zeroth-order gradients), gradient-
based approaches, or large language models. In this chapter, we provide an
overview and describe these different types of meta-learning in both supervised
and reinforcement learning. In each subsequent chapter, we will delve deeper
into several of these approaches in the context of our contributions.

1.2.1 A description of meta-learning on multiple timescales

One popular perspective on meta-learning is to consider how it creates multiple
timescales and levels of abstraction. illustrates the generic struc-
ture of meta-learning. In the case of two levels, we refer to the first level as
the inner loop and the second level as the outer loop. The inner loop, corre-
sponding to the learning algorithm A", iteratively updates the parameters ¢
of the model or policy 7y. To learn, the algorithm receives feedback in the form
of rewards {R;} or demonstrations {D,}. These parameters can represent the
weights of a neural network [Schmidhuber, [1992¢, [19934] or the memory (such
as hidden or context state) of a neural network [Hochreiter et all, 2001]. The
outer loop, operating on a slower timescale, updates the meta-parameters ¢ of
the learning algorithm (using the meta-learner A°"*"). Meta-training describes
the optimization process of running the outer loop, which in turn executes the
inner loop. Meta-testing involves holding the meta-parameters fixed while only
running the inner loop. A common setup is to meta-train across several tasks
or environments {7;}, the meta-training distribution, to successfully learn on
unseen environments. These unseen tasks or environments correspond to the
meta-test distribution. What is the benefit of having multiple levels? We only
need to design the meta-learner manually, while the inner learning algorithm
can be discovered automatically and may go beyond the capabilities of human
algorithm designs. The meta-learner is typically a simple and universal learning
algorithm, whereas the inner learning algorithm may exhibit desirable properties
such as better sample efficiency, exploration, or performance at convergence. In
principle, additional levels of meta-learning can be added, but as we will discuss
in [Chapter 7, this does not solve the core goal of automating Al research: mini-
mal human intervention. Instead, self-reference enables the learning algorithm
to improve itself without the need for human-designed meta-learners.

7 1.2 Background & Related work

In the following sections, we focus on describing different structures and param-
eterizations of the inner learning algorithm A" as this choice directly affects
properties such as expressivity, generalization, and efficiency of the discovered
learning algorithms. Different types of outer meta-learners A°**** can usually be
combined with any of these inner choices, such as evolutionary methods (zeroth-
order gradients), gradient-based approaches, or large language models.

Algorithm 1 A generic meta-learning algorithm

Require: Initial meta-parameters ¢ parameterizing the learning algorithm Agmer that updates a
model or policy 7y, a set of tasks or environments {7;} or demonstrations {D,}, and a meta-
learning algorithm A°uter

for each meta-iteration do > Outer loop
Initialize or carry-over model or policy parameters 69
for each inner iteration t do > Inner loop

Evaluate the model 7y, on (a subset of) tasks {T;}, yielding { R: },—¢
and/or obtain demonstrations {D!};_
Update the model parameters 6% «— Almmer (651, {T;}, { R }—, {D}}=¢) > Learning

Update the meta-parameters ¢ < A°"° (¢, {60!}, {T;}, {Rt}, {D!}) > Meta-Learning

1.2.2 Parameterizing gradient-based learning algorithms

Much of recent deep learning is based on optimization using gradient de-
scent [Schmidhuber, 20T5], where gradients are usually obtained using back-
propagation [Linnainmaa, 1970]. In the context of meta-learning learning algo-
rithms, it is thus natural to parameterize learning algorithms that make use of gra-
dient descent (and backpropagation). Additional meta-parameters define how
these gradients are derived or modified before being applied to the model param-
eters. We refer to this class of algorithms as gradient-based meta-learning.

These approaches include learning optimizers [Ravi and Larochelle, 2017;
Andrychowicz et al], 2016], weight initialization and adaptation with a human-
engineered RL algorithm [Finn et all, 2017], warping computed gradients [Flen-
nerhag et al], 2020], meta-learning hyperparameters [Sutton, 1992; Schraudolph,
1999; Xu et all, 20T8], or meta-learning loss functions corresponding to the learn-
ing algorithm [Houthooft et al), 2018;; Kirsch et al), 2020b].

illustrates the general structure of gradient-based meta-learning.
Model parameters 6 are updated by a gradient-based update rule that is param-

eterized by ¢. L™ could, for example, represent a meta-learned loss function
(see [Chapter 2)) or a standard loss where ¢ corresponds to the weight initializa-
tion ¢ = 6, [Finn et all, 2017].

8 1.2 Background & Related work

Algorithm 2 Gradient-based meta-learning algorithms

Require: Initial meta-parameters ¢ parameterizing the gradient-based learning algorithm
V(;Li;‘““ that updates a model or policy 7y, a set of tasks or environments {7;} or demonstra-
tions {D;}, and a meta-learning algorithm A°uter

for each meta-iteration do > Quter loop
Initialize or carry over model or policy parameters 69
for each inner iteration t do > Inner loop

Evaluate the model 7y, on (a subset of) tasks {7}, yielding { Rf}1—¢
and/or obtain demonstrations { D!},
Update the model parameters 6% « 65" — Wy, LIt (001 {T;}, { Rl }imi, { D! }i—i) &
Learning
Update the meta-parameters ¢ < A°"* (¢, {60!}, {T;}, {Rt}, {D!}) > Meta-Learning

Learning optimizers A straightforward meta-parameterization of gradient-
based learners is to meta-learn the transformation from the gradient to the
applied parameter update [Ravi and Larochelle, 2017; Li and Malik, 2017;
Andrychowicz et all, 2016; Metz et all, 20204]. This corresponds to automati-
cally discovering novel optimizers, similar to those manually engineered by hu-
mans, e.g., Adam [Kingma and Bd, 20T4]. This parameterization is applicable to
both supervised and reinforcement learning, provided that a known algorithm is
used to obtain the gradients. At the same time, this parameterization may limit
the types of learning algorithms that are discovered. The main update signal, in
the form of a gradient, is already provided as an input and does not need to be
meta-learned.

Learning model initializations Instead of meta-parameterizing the optimizer di-
rectly, many recent meta-learning algorithms influence the learning trajectory in-
directly by finding a model or policy initialization. This initialization is then fine-
tuned using a fixed supervised or reinforcement learning algorithm [Finn et al),
2017; Grant et al], 2018; Yoon et al], 2018]. Despite still using a fixed known
learning algorithm, this parameterization is, in principle, quite expressive [Finn
and Leving, 20T8]. In practice, these approaches rely mostly on feature reuse
(transfer learning) instead of the discovery of novel learning algorithms [Raghu
et al., 2020].

Learning objective functions A more expressive parameterization of gradient-
based learning algorithms involves meta-learning the objective (or loss) func
tion that is being differentiated itself. In supervised learning, these objective
functions are a function of the output of the neural network and the labels.
Human-designed objective functions include, for instance, the mean squared

9 1.2 Background & Related work

error or cross-entropy loss. This parameterization can be particularly useful in
reinforcement learning, where surrogate losses such as REINFORCE [Williams,
1992] or PPO [Schulman et al], 2017] are designed by researchers to circum-
vent the non-differentiability of the RL problem. Such meta-learning has previ-
ously been shown to be successful for learning quickly on new RL tasks similar
to the meta-training distribution [Houthooft et all, 2018; Bechtle et all, 2021]
and, in the context of our recent work, to generalize to significantly different
environments [Kirsch et all, 2020b; Oh et all, 2020]. In supervised learning,
learned objective functions have also been used for learning unsupervised rep-
resentations [Metz et al], 20194], aiding learning in downstream tasks. This can
be viewed as replacing hand-crafted unsupervised objective functions, like the
predictability of a sequence [Schmidhuber, 1991d, 19924], with meta-learned
ones. The previously mentioned works used neural parameterizations of ob-
jective functions. Techniques from architecture search have also been used to
search for viable artificial curiosity objectives composed of primitive symbolic
functions [Alet et all, 2020; Co-Reyes et al], 202T].

Learning intrinsic rewards A related notion to meta-learning objective func-
tions is the meta-learning of intrinsic reward functions [Niekum et all], 2011];
/heng et al], 2018] connected to earlier work on subgoal generation [Schmid-
huber, 1991b; Wiering and Schmidhubei, [19964; Singh et al), 2004]. The main
difference is that the learning algorithm remains fixed and is guided by an intrin-
sically generated reward signal instead of being fully parameterized.

1.2.3 Updating weights through fast weight programmers

Instead of relying on gradients to update neural network (NN) parameters, these
updates can also be directly meta-parameterized. This is achieved by defining
neural update rules that modify these weights, as described in [Algorithm 3. NNs
that generate or modify the weights of another NN—or even the same NN—
were first introduced as fast weight programmers [Schmidhuber, 1992b, 19934;
Ba et al], 20T6a; Schlag et all, 2021b]. Several variants of these have been
developed, such as Hypernetworks [Ha et al), 2017], synaptic plasticity [Miconi
et al], 2018; Najarro and Risi, 2020], or learned learning rules [Bengio et al],
1992; Gregoi, 2020; Randazzo et all, 2020]. Fast weight programmers are also
of interest outside meta-learning, for instance, to generate policies for a specific
task or given a problem description [Harb et all, 2020; Faccio et all, 2021D,
2023].

10 1.2 Background & Related work

Algorithm 3 A fast weight programmer (FWP) meta-learning algorithm

Require: Initial meta-parameters ¢ parameterizing the FWP neural network Ag‘ner that
updates a model or policy 7y, a set of tasks or environments {7}, and a meta-learning
algorithm Acuter

for each meta-iteration do > Outer loop
Initialize or carry over model or policy parameters 6
for each inner iteration t do > Inner loop

Evaluate the model 7y, on (a subset of) tasks {T;}, yielding { R! };—¢

and/or obtain demonstrations { D!},

Update the model parameters 0f < AX™e(0;1, {T;}, { R }1=t, { D} }1=t) where
A;‘“CY is a neural network that takes input weights 9271 to produce updated weights 6° > Learning

Update the meta-parameters ¢ < A°"* (¢, {01}, {T;}, {Rt}, {Dt}) >
Meta-Learning

1.2.4 In-context learning with black-box neural networks

Instead of relying on gradients or parameterized weight updates, learning can
occur in any black-box neural network that receives a feedback signal or demon-
stration as input [Schmidhuber, T993b]. This is known as memory-based meta-
learning when a memory h; is used to iteratively store and retrieve information
that determines model or policy improvements. It has been shown that an RNN,
such as an LSTM, can learn to implement a learning algorithm [Hochreiter et all,
2001]] when the reward or demonstrations are provided as input [Schmidhuber,
1993K]. After meta-training, the learning algorithm is encoded in the weights
of this RNN and determines learning during meta-testing. The activations serve
as the memory to encode the learned program. We refer to these RNNs as in-
context RNNs [Hochreiter et al], 2001; Duan et all, 2016; Wang et al!, 2016]
(Fig 4). This mechanism has also received substantial recent attention in
Transformer models [Brown et al], 2020; Chan et al), 2022] under the name of
in-context learning. In large language models (LLMs), demonstrations of a task
in the input help solve language-based tasks at inference (meta-test) time [Brown
et all, 2020]. In the case of Transformers, the memory h; increases in dimen-
sionality with the sequence length. Memory-based (in-context) learning and
fast weight programmers are closely related when interpreting activations as
weights that encode a program. This connection is established in our work on
VSML [Kirsch and Schmidhuber, 2021], Chapter 3. Furthermore, Linear Trans-
formers [Katharopoulos et all, 2020] are equivalent to certain fast weight pro-
grammers [Schmidhuber, 19934; Schlag et all, 202Ta]. In-context learning has
also been interpreted from a Bayesian inference perspective [Ortega et all, 2019;

11 1.2 Background & Related work

Mikulik et al], 2020; Nguyen and Grover, 2022; Muller et all, 20272].

a i

Inner loop
Updates RNN states &

Outer loop
Updates RNN parameters ¢

Figure 1.4: In-context learning in neural networks. A neural network, here re-
current, can implement a learning algorithm in its parameters ¢ when a feedback
signal such as the reward r, in RL is fed as an input in addition to the observation
o to produce an action a;. This allows learning to occur based on this signal in
the memory/activations h. Meta-learning then corresponds to the optimization

of ¢.

Algorithm 4 In-context learning algorithms

Require: Initial meta-parameters ¢ parameterizing the in-context learning algorithm (neural net-
work) A" that updates the context / memory h;, a set of tasks or environments {7}} or
demonstrations {D;}, and a meta-learning algorithm A°uter

for each meta-iteration do > Outer loop
Initialize or carry over the context/ memory h°
for each inner iteration t do > Inner loop

Evaluate the model 7, on (a subset of) tasks {T;}, yielding { Rt },—¢
and/or obtain demonstrations { D!},
Update the context A} «— Alrmer (B~ {T;}, { R}, { D! }i=t) > Learning

Update the meta-parameters ¢ < A°"** (¢, {ht}, {T;},{R:}, {D!}) > Meta-Learning

illustrates the general structure of in-context learning, where the
model is now parameterized by the context 6 := h.

What is a supervised in-context learning algorithm? More concretely, a su-
pervised in-context learning algorithm can be formalized as follows. Consider a
mapping

({zi,y:}i5,2") = of (1.1)

12 1.2 Background & Related work

from the training (support) set D = {z;, 4;}23 and a query input 2’ to the query’s
prediction v/, where z;,2/ € R, y;.y/ € R™, and Np, N, N, € N*. The
subset of these functions that qualify as learning algorithms Al are those
that improve their predictions ¢y’ given an increasingly larger training set D.
Meta-learning then corresponds to finding these functions via meta-optimization.
Typically, neural networks are used to approximate such functions. In-context
learning differs from gradient-based meta-learning (such as MAML [Finn et al],
2017]) in that no explicit gradients are computed at meta-test time. All the
learning mechanisms required are implicitly encoded in the black-box neural
network.

1.2.5 Architectures and hyperparameters

In addition to the (automated) design of the learning algorithm, the neu-
ral architecture must also be selected. While many architectures, such as
RNNs, LSTMs [Hochreiter and Schmidhuber, 1997h; Gers et al!, 20004], or
Transformers [Schmidhuber, 1992b; Vaswani et all, 20T17] (with recurrence in
depth [Schmidhuber, 19934] or width [Schuurmans et all, 2024]), are universal,
improvements in neural architectures remain an active research field and thus
also benefit from automation. This field of research is known as neural archi-
tecture search (NAS) [Elsken et al], 2019; Kirsch, 20T7]. In this thesis, we do
not focus on this design choice and assume fixed universal architectures. Fur-
thermore, instead of learning the entire learning algorithm from scratch, many
methods parameterize hand-crafted components and optimize these hyperpa-
rameters [Feurer et all, 2015; Golovin et al], 2017; Xu et all, 2018; Mukunthu
et al], 2019]. The works in this thesis are concerned with higher-dimensional
search spaces that can express novel learning algorithms beyond hyperparameter
tuning.

1.2.6 Symbolic search spaces and programmers

Similar to how we can search over neural architectures and hyperparameters, we
can also search over symbolic abstractions of learning algorithms. Such abstrac-
tions can include the equations of objective functions [Alet et all, 2020] or the
entire computational graph that describes the machine learning algorithm ex-
pressed in code [Schmidhuber, 1987, 1994k; Real et al!, 2020]. This symbolic
representation can then be searched using zeroth-order optimization methods
such as evolutionary algorithms. Because these representations are discrete in
nature, direct gradient-based optimization is not possible, and solutions must

13 1.2 Background & Related work

be mutated with mutation operators. This makes meta-optimization consider-
ably harder and has so far limited the success of this research direction. Recent
advances in large language models [Vaswani et all, 2017; Brown et al), 2020]
offer a new way to approach this problem by defining a strong prior over code
generation and mutation operators. We will discuss the prospects of this di-

rection in and how in-context learning (Chapter 3, [Chapter 5) plays
a major role in this approach. Meta-learning algorithms that search over code
or other symbolic representations are illustrated in Algorithm 5. Here, we as-
sume the programmer searches over a neural network-based learning algorithm.
However, the same principle may apply to other substrates (sub-programs) of Al
systems.

Algorithm 5 Programmer (code-based) meta-learning algorithms

Require: Initial program ¢ parameterizing the Al system / learning algorithm Agm"r that
updates the neural network 7y (or sub-program), a set of tasks or environments {7}
or demonstrations {D;}, and a programmer A°"*" (e.g. evolutionary or LLM-based)

for each meta-iteration do > Outer loop (Programmer)
Initialize or carry over the NN / code my
for each inner iteration t do > Inner loop (Run the Program)

Evaluate the NN / sub-program 7y, on (a subset of) tasks {7}, yielding { B! },—¢

and/or obtain demonstrations {D; };—¢

Update NN / sub-program 6! + Agmer(éf_l, {T;} AR =t {Di }1=t) >
Learning

Update the program describing the Al system
¢+ AW, {01} {T;}, { R}, {D}) > Meta-Learning

1.2.7 Recursive self-improvement

The previously mentioned approaches to meta-learning all rely on a hierarchi-
cal structure where a meta-optimizer optimizes an inner learning algorithm.
This creates a dependency on human engineering at the meta-level, as meta-
learning algorithms must be designed. Have we then truly gained anything?
Arguably, this meta-optimizer can be much simpler in its structure and does not
need to be highly sample-efficient if the meta-learned learning algorithm later
generalizes effectively. In principle, one could also meta-meta-learn this meta-
algorithm [Schmidhuber, 1987, [1993Db], but this would still involve some degree
of human engineering. Ideally, human-engineered biases are minimized to the
greatest extent possible, relying instead on self-improvements derived from data
or environment interactions to automatically develop better learners, meta-meta-

14 1.3 Contributions and key ideas

learners, and so on in a recursive and self-referential manner [Schmidhuber et all,
1997; Schmidhuber, 2007]. In Chapter 7, we propose neural self-referential
meta-learning systems that modify themselves without requiring explicit meta-
optimization.

1.3 Contributions and key ideas

This is a brief summary of our contributions towards automating artificial in-
telligence research through general-purpose meta-learning and recursive self-
improvement. We begin with our work MetaGenRL (Chapter 2), which meta-
learns surrogate objective functions to automatically discover reinforcement
learning algorithms. We demonstrate that meta-learning can successfully gen-
erate reinforcement learning algorithms that generalize across significantly dif-
ferent environments. Next, in VSML (Chapter 3)), we remove the reliance on
backpropagation at meta-test time. In this approach, the backpropagation algo-
rithm is encoded in the activation spreading of parameter-shared recurrent neu-
ral networks. This enables the discovery of novel general-purpose learning algo-
rithms for supervised learning without relying on hard-coded backpropagation.
In SymLA (Chapter 4), we explore how symmetries in the parameterization of
RL policies can aid in discovering more general-purpose RL algorithms. GPICL
(Chapter 5) demonstrates that even without parameter sharing, and with a suf-
ficiently rich task distribution, neural networks such as Transformers can learn-
to-learn generally. We discuss in GLAs (Chapter) how this can be extended
to Transformer-based RL agents trained using supervised learning techniques.
Finally, we explore how to further reduce reliance on human-engineered meta-
optimization to obtain recursively self-improving systems in [Chapter 7. In Al
Scientist (Chapter 8), we discuss how LLMs can be leveraged to automate Al
research in the search space of code and natural language, based on the vast
literature of human Al research.

The key ideas can be summarized as follows:

Automating Al research requires general-purpose learning algorithms To au-
tomate Al research, meta-learned learning algorithms (LAs) must be as general-
purpose and reusable as their hand-crafted counterparts. In contemporary meta-
learning research, this is rarely the case [e.g. Duan et all, 2076, Wang et all,
20716; Finn et all, 2077, Houthoott et all, 2018]. We contribute a series of
works, namely MetaGenRL, VSML, SymLA, GPICL, and GLAs, that demonstrate

15 1.3 Contributions and key ideas

the feasibility of the automated discovery of general-purpose LAs.

General-purpose meta-learners are on a spectrum of inductive bias and data
distributional pressure Such general-purpose LAs can be obtained either by
adding structure to the learning algorithm at meta-test time or by training over
a broad enough data distribution to elicit generalization. The structure of the
learning algorithm can take many forms. This can include the introduction of
inductive bias based on known learning principles, such as hard-coding the use
of gradients [Chapter 2 Kirsch et all, 2020b; Metz et al], 2019b; Oh et al], 2020].
Alternatively, the meta-learned LA can be regularized in various ways to encour-
age learning over memorization. It can be limited in capacity by bottlenecking
the neural network (Chapter 3)), the symbolic language that describes it [Real
et all, 2020; Co-Reyes et all, 2021], or the inputs accessible to the LA. Further-
more, symmetries can be introduced as regularization (Chapter 4).

Chapter 2 to
(D 0

The difference between weights and activations is largely a semantic question
Human-engineered learning algorithms usually update the weights of a neural

network via gradient descent. Thus, it is natural to formulate meta-learning algo-
rithms that also update the weights of a neural network with fast weight program-
mers [Schmidhuber, [1992Db, [1993a; Baetall, 20T6a; Schlag et al!, 2021b]. Does
meta-learning require weight updates? Weight updates are neither a sufficient
nor a necessary condition for meta-learning. Neural networks such as LSTMs
and Transformers can perform learning-to-learn purely in-memory [Hochreiter
et al], 200T] or in-context [Brown et all, 2020]. In fact, we demonstrate that
activations in an RNN or LSTM can be interpreted as weight updates (Chap]
fer 3). Later work has shown that linear Transformers are equivalent to certain
fast weight programmers [Schlag et all, 20274d]. At the same time, fast weight
programmers can also be used as a general method to increase the memory ca-
pacity of a neural network without any meta-learning involved [Schmidhuber,
19934].

Memory capacity is a fundamental pillar of meta-learning If weight updates [Chapter 3 _
are not central to meta-learning, what makes a neural network a good meta- [

learner? In VSML (Chapter 3), we argue that a large memory capacity is a nec-
essary component for a meta-learner that is general-purpose, due to the require-
ments of extracting a lot of information from the inference-time data provided
in-context and storing it. We decouple meta-parameters from available memory
through parameter sharing. In GPICL (Chapter 5), we show how memory capac

16 1.3 Contributions and key ideas

ity predicts in-context learning performance across various architectures, largely
independent of the parameter count.

Hand-crafted learning algorithms can be distilled into neural networks In
meta-learning, we usually meta-optimize for optimal learning behavior from
scratch. In VSML, we demonstrate that we can also distill existing learning algo-
rithms, such as gradient descent and backpropagation, into the activations of a
neural network (Chapter 3). This may be used to bootstrap a learning algorithm
from well-performing known learning algorithms and improve its performance
from this initialization. This principle has later been used to distill RL algorithms
into Transformers [Laskin et al], 2022]. Building on this, we use supervised
learning to distill existing RL PPO learning trajectories into a general-purpose
in-context learning agent in Chapter §. We use this mechanism to accelerate ex-
isting RL algorithms via meta-learning while ensuring their generalization prop-
erties with sufficient data diversity.

Parameter sharing is a requirement for fully self-referential architectures Pa-
rameter sharing can not only enable an increase in memory capacity but is also
a crucial component for fully self-referential architectures. In order for a neural
network to update all its parameters and activations, the parameters must be

reused/shared (Chapter 7).

Recursive self-improvement is an architecture-agnostic phenomenon Does
recursive self-improvement [Schmidhuber, 1993k, 2007] in neural networks re-
quire updating all parameters in a neural network, i.e., a fully self-referential
neural architecture? In [Chapter 7, we show that, in principle, any memory-
based or in-context learner can self-improve in an arbitrary manner, and this is
not tied to a fully self-referential architecture.

LLMs and in-context learning form the basis for automated Al research with
reasoning in natural language In-context learning of today’s Large Language
Models (LLMs) can be used as the inner loop of a language-based automated
scientist. This ‘Al Scientist’ is a new outer loop, replacing the original hand-
crafted meta-learning algorithm. By training new Al models, we conjecture that
methods like the Al Scientist will recursively self-improve its own capabilities in
the future, leading to Artificial Super Intelligence.

Chapter 2

MetaGenRL: Meta-learning
gradient-based RL algorithms that
generalize

Keywords gradient-based, objective functions, reinforcement learning
Article Kirsch et al] [2020b] (preprint 2019)

2.1 Introduction

The process of evolution has equipped humans with incredibly general learning
algorithms. These algorithms enable us to solve a wide range of problems,
even in the absence of extensive prior experiences. The algorithms that give
rise to these capabilities are the result of distilling the collective experiences
of many learners throughout the course of natural evolution. Essentially, by
learning from learning experiences in this way, the resulting knowledge can
be compactly encoded in the genetic code of an individual, giving rise to the
general learning capabilities we observe today.

In contrast, Reinforcement Learning (RL) in artificial agents rarely follows this
paradigm. The learning rules used to train agents are typically the result of years
of human engineering and design (e.g., Williams [1992]; Wierstra et al] [2008];
Mnih et al] [2013]; Lillicrap et al] [2016]; Schulman et al] [20154d]). Conse-
quently, artificial agents are inherently limited by the designer’s ability to incor-
porate the right inductive biases to learn effectively from prior experiences.

17

18 2.1 Introduction

Several works have proposed an alternative framework based on meta-
reinforcement learning [Schmidhuber, 1993k; Wang et all, 2016; Duan et all,
2016; Finn et al), 2017; Houthooft et all, 2018; Clung, 2019]. Meta-RL distin-
guishes between learning-to-act in the environment (the reinforcement learning
problem) and learning-to-learn (the meta-learning problem). This distinction al-
lows learning itself to become a learning problem, enabling one to leverage prior
learning experiences to meta-learn general learning rules that surpass human-
engineered alternatives. However, while prior work has shown that learning
rules can be meta-learned to generalize to slightly different environments or
goals [Finn et al!, 2017; Plappert et al!, 2018; Houthooft et al!, 2018], general-
ization to entirely different environments remains an open challenge.

In this work, we present MetaGenRLE, a novel meta-reinforcement learning algo-
rithm that meta-learns learning rules capable of generalizing to entirely different
environments. MetaGenRL is inspired by the process of natural evolution and
the ubiquitous description in research of RL algorithms as pseudo-objective func-
tions optimized by gradient descent. Our approach distills the experiences of
many agents into the parameters of a low-complexity objective function that de-
termines how future individuals will learn. Similar to Evolved Policy Gradients
(EPG; Houthooft et al] [2018]), it meta-learns neural objective functions that can
be used to train complex agents with many parameters. However, unlike EPG,
it is able to meta-learn using second-order gradients, which offers several advan-
tages, as we will demonstrate. Furthermore, unlike recent meta-RL algorithms,
MetaGenRL can generalize to new environments that are entirely different from
those used for meta-training.

We evaluate MetaGenRL on a variety of continuous control tasks and compare
it to RL?2 [Wang et al], 2016; Duan et al], 2016] and EPG, in addition to several
human-engineered learning algorithms. Compared to RL?, we find that Meta-
GenRL does not overfit and is able to train randomly initialized agents using
meta-learned learning rules on entirely different environments. Compared to
EPG, we find that MetaGenRL is more sample efficient and significantly outper-
forms it under a fixed budget of environment interactions. The results of an
ablation study and additional analysis provide further insights into the benefits
of our approach.

'Code is available at http://louiskirsch.com/code/metagenrl

http://louiskirsch.com/code/metagenrl

19 2.2 Preliminaries

2.2 Preliminaries

Notation We consider the standard MDP Reinforcement Learning setting de-
fined by a tuple e = (S, A, P, po, 7,7, T) consisting of states .S, actions A, the
transition probability distribution P : S x A x S — R, an initial state distribu-
tion py : S — R, the reward function r : S X A — [— R4z, Rimaz), @ discount
factor v, and the episode length T". The objective for the probabilistic policy
T 0 S x A — Ry parameterized by ¢ is to maximize the expected discounted
return:

T-1

ET[Z /ytrt]a where sy ~ PO(SO)a Qg ~ 7r¢(at|3t)v Stp1 P(3t+1|3t7 at)a ry = T(5t7 @t)7
t=0
(2.1)

with 7 = (s¢, ag, 70, 51, ..., S7—1, A1, T7-1).

Human Engineered Gradient Estimators A popular gradient-based approach
to maximizing is REINFORCE [Williams, 1992]. It directly differ-
entiates with respect to ¢ using the likelihood ratio trick to derive
gradient estimates of the form:

T-1 T-1

VB [Lrpive(r, 7)) i= B[V Y logmg(arls:) - > " re)]. (2.2)

t=0 t'=t

This basic estimator has become a building block for an entire class of policy-
gradient algorithms of this form. For example, a popular extension from Schul-
man et al! [20T5b] combines REINFORCE with a Generalized Advantage Esti-
mate (GAE) to yield the following policy gradient estimator:

T-1

VB [Loap(T, 75, V)] = B[V) logmg(arls) - A(r, V,t)]. (2.3)

t=0

where A(7,V,t) is the GAEand V' : S — R is a value function estimate. Several
recent extensions include TRPO [Schulman et al], 20154], which discourages
bad policy updates using trust regions and iterative off-policy updates, or PPO
[Schulman et all, 20T7], which offers similar benefits using only first-order ap-
proximations.

Parametrized Objective Functions Many of the human-engineered policy gra-
dient estimators [e.g. Williams, [1992; Schulman et all, 2015b,d, 2017] can be

20 2.3 Meta-Learning neural objectives

Enviro(n:_l)ment el BT S N Meta Learning
e . g
(i) = e, o= a+V,0(s, my(s))
BY N2 1. N Critic e, e {4 A neural objective function that
~" ., With¢'=¢-V,L, .)
ad _) o A »| implements an RL algorithm
Store Qa (s,a)
L(z, Ty, V)
‘\: .' > Learning "':
; Interact 4 pep=Vyl, e
R £ P [Sfffreeeee
iel..N

T
T

Figure 2.1: A schematic of MetaGenRL. On the left a population of agents
(i € 1,...,N), where each member consist of a critic Qg) and a policy 7t
that interact with a particular environment e and store collected data in a cor-
responding replay buffer B%). On the right a meta-learned neural objective
function L, that is shared across the population. Learning (dotted arrows) pro-
ceeds as follows: Each policy is updated by differentiating L., while the critic is
updated using the usual TD-error (not shown). L, is meta-learned by computing
second-order gradients that can be obtained by differentiating through the critic.

viewed as specific implementations of a general objective function L that is dif-
ferentiated with respect to the policy parameters

V¢E7’ [L(7—7 T, V)]a (2.4)

where 7, is the policy, 7 is a sequence of environment interactions, and V' is a
value function.

Consequently, it is natural to consider a generic parameterization of L that, for
specific choices of parameters «, can recover some of these estimators. In this
work, we focus on neural objective functions, where L, is implemented as a
neural network. Our objective is to optimize the parameters « of this neural net-
work to create a new learning algorithm that effectively maximizes
across a wide range of diverse environments.

2.3 Meta-Learning neural objectives

In this work we propose MetaGenRL, a novel meta reinforcement learning al-
gorithm that meta-learns neural objective functions of the form L, (7,7, V).
MetaGenRL makes use of value functions and second-order gradients, which
makes it more sample efficient compared to prior work [Duan et all, 2016; Wang

21 2.3 Meta-Learning neural objectives

et all, 20T6; Houthooft et al], 20T8]. More so, as we will demonstrate, Meta-
GenRL meta-learns objective functions that generalize to vastly different envi-
ronments.

Our key insight is that a differentiable critic @y : S x A — R can be used to mea-
sure the effect of locally changing the objective function parameters o based on
the quality of the corresponding policy gradients. This enables a population of
agents to use and improve a single parameterized objective function L, through
interacting with a set of (potentially different) environments. During evaluation
(meta-test time), the meta-learned objective function can then be used to train a
randomly initialized RL agent in a new environment.

2.3.1 From DDPG to gradient-based meta-learning of neural ob-
jectives

We will formally introduce MetaGenRL as an extension of the DDPG actor-critic
framework [Silver et al], 2014; Lillicrap et al], 2016]. In DDPG, a parameterized
critic of the form Qg : S x A — R transforms the non-differentiable RL reward
maximization problem into a myopic value maximization problem for any s; €
S. This is done by alternating between optimization of the critic Q9 and the
(here deterministic) policy m4. The critic is trained to minimize the TD-error by
following:

Vi Z (QO(Sta at) - ?/t)Qa where y, =1, + - Q6(5t+17 7T¢(5t+1))7 (2.5)

(St ,at,Tt 7St+1)

and the dependence of y; on the parameter vector 6 is ignored. The policy 7,
is improved to increase the expected return from arbitrary states by following
the gradient V43 Qo(s:, mg(s¢)). Both gradients can be computed entirely
off-policy by sampling trajectories from a replay buffer.

MetaGenRL builds on this idea of differentiating the critic (Qy with respect to the
policy parameters. It incorporates a parameterized objective function L, that is
used to improve the policy (i.e. by following the gradient V4L,), which adds
one extra level of indirection: The critic)y improves L., while L, improves the
policy m4. By first differentiating with respect to the objective function parame-
ters «, and then with respect to the policy parameters ¢, the critic can be used

22 2.3 Meta-Learning neural objectives

Algorithm 6 MetaGenRL: Meta-Training
Require: p(e) a distribution of environments
P < {(e; ~p(e),¢1,01,B1 < @),...} > Randomly initialize population of
agents
Randomly initialize objective function L,
while L, has not converged do
fore,¢,0,B € Pdo > For each agent ¢ in parallel
if extend replay buffer B then
Extend B using 7, in e

Sample trajectories from B
Update critic @y using TD-error
Update policy by following VL,
Compute objective function gradient A, for agent ¢ according to
tion 2.6
Sum gradients) . A; to update L,

to measure the effect of updating 74 using L,, on the estimated return®:
VaQo(st, Ty (st)), where ¢’ = ¢ — VLo (7, 2(4),V). (2.6)

This constitutes a type of second order gradient V,,V, that can be used to meta-
train L, to provide better updates to the policy parameters in the future. In
practice we will use batching to optimize over multiple trajectories

T.

Similarly to human-engineered policy-gradient estimators from Section 2.7, the
objective function L, (7,z(¢), V') receives as inputs an episode trajectory 7 =
(s0.7-1, @071, To.7—1), the value function estimates V, and an auxiliary input
z(¢) (previously 7,) that can be differentiated with respect to the policy param-
eters. The latter is critical to be able to differentiate with respect to ¢ and in the
simplest case it consists of the action as predicted by the policy. Extensions of
this may include the hidden state of the policy or other policy-predicted quanti-
ties. While is used for meta-learning L,, the objective function L,
itself is used for policy learning by following VL, (T, z(¢), V). See
for an overview. MetaGenRL consists of two phases: During meta-training, we
alternate between critic updates, objective function updates, and policy updates

2In case of a probabilistic policy ms(at|s:) the following becomes an expectation under
and a reparameterizable form is required [Williamg, T988; Kingma and Welling, 20T4; Rezende
et al], 20T4]. Here we focus on learning deterministic target policies.

23 2.3 Meta-Learning neural objectives

to meta-learn an objective function L, as described in [Algorithm @. During
meta-testing in [Algorithm 7], we take the learned objective function L,, and keep

it fixed while training a randomly initialized policy in a new environment to
assess its performance.

We note that the inputs to L, are sampled from a replay buffer rather than solely
using on-policy data. If L, were to represent a REINFORCE-type objective then
it would mean that differentiating L., yields biased policy gradient estimates. In
our experiments we will find that the gradients from L, work much better in
comparison to a biased off-policy REINFORCE algorithm, and to an importance-
sampled unbiased REINFORCE algorithm, while also improving over the popu-
lar on-policy REINFORCE and PPO algorithms.

2.3.2 Parametrizing the objective function

We implement L, using an LSTM [Gers et al], 2000b; Hochreiter and Schmid?
huber, 19974] that iterates over 7 in reverse order and depends on the current
policy action 7,(s;) (see Figure 2.2). At every time-step L,, receives the reward
r¢, taken action a,, predicted action by the current policy 74(s;), the time ¢, and
value function estimates V;, V;,18. At each step the LSTM outputs the objective
value [;, all of which are summed to yield a single scalar output value that can
be differentiated with respect to ¢. In order to accommodate varying action
dimensionalities across different environments, both 74(s;) and a, are first con-
volved and then averaged to obtain an action embedding that does not depend
on the action dimensionality. Additional details, including suggestions for more

expressive alternatives are available in Section A2

By presenting the trajectory in reverse order to the LSTM (and L, correspond-
ingly), it is able to assign credit to an action a; based on its future impact on
the reward, similar to policy gradient estimators. More so, as a general function
approximator using these inputs, the LSTM is in principle able to learn different
variance and bias reduction techniques, akin to advantage estimates, general-
ized advantage estimates, or importance weightsf. Due to these properties, we
expect the class of objective functions that is supported to somewhat relate to a

3The value estimates are derived from the Q-function, i.e. Vi = Qg(s¢, m4(s:)), and are
treated as a constant input. Hence, the gradient V4L, can not flow backwards through Q,
which ensures that L, can not naively learn to implement a DDPG-like objective function.

“We note that in practice it is is difficult to assess whether the meta-learned object function
incorporates bias / variance reduction techniques, especially because MetaGenRL is unlikely to
recover known techniques.

24 2.3 Meta-Learning neural objectives

REINFORCE [Williams, [T992] estimator that uses generalized advantage estima-
tion [Schulman et all, 20150].

— LSTM —

Algorithm 7 MetaGenRL: Meta- / ’\
Testing conv| 1, V,V, .t
Require: A test environment e, and an
objective function L, f
Randomly initialize 7y, Vp, B < @ b m(S)
while 7, has not converged do Figure 2.2: The architecture of the

if extend replay buffer B then

_ : objective function. The learning al-
Extend B using 7y in e

gorithm is described by an objec
Sample trajectories from B tive function L,(7,2(¢),V) parame-
Update Vp using TD-error terized by « that processes taken and
Update policy by following VLo predicted actions with an element-
wise convolution and processes an en-
tire trajectory 7 with an LSTM.

2.3.3 Generality and efficiency of MetaGenRL

MetaGenRL offers a general framework for meta-learning objective functions
that can represent a wide range of learning algorithms. In particular, it is only
required that both 7, and L, can be differentiated w.r.t. to the policy parame-
ters ¢. In the present work, we use this flexibility to leverage population-based
meta-optimization, increase sample efficiency through off-policy second-order
gradients, and to improve the generalization capabilities of meta-learned objec-
tive functions.

Population-Based A general objective function should be applicable to a wide
range of environments and agent parameters. To this extent MetaGenRL is able
to leverage the collective experience of multiple agents to perform meta-learning
by using a single objective function L, shared among a population of agents that
each act in their own (potentially different) environment. Each agent locally
computes over a batch of trajectories, and the resulting gradients
are combined to update L,. Thus, the relevant learning experience of each
individual agent is compressed into the objective function that is available to
the entire population at any given time.

25 2.3 Meta-Learning neural objectives

Sample Efficiency An alternative to learning neural objective functions using
a population of agents is through evolution as in EPG [Houthootft et all, 2018].
However, we expect meta-learning using second-order gradients as in Meta-
GenRL to be much more sample efficient. This is due to off-policy training
of the objective function L, and its subsequent off-policy use to improve the
policy. Indeed, unlike in evolution there is no need to train multiple randomly
initialized agents in their entirety in order to evaluate the objective function,
thus speeding up credit assignment. Rather, at any point in time, any infor-
mation that is deemed useful for future environment interactions can directly
be incorporated into the objective function. Finally, using the formulation in

one can measure the effects of improving the policy using L,, for
multiple steps by increasing the corresponding number of gradient steps before

applying @y, which we will explore in [Figure 2.5.2.

Meta-Generalization The focus of this work is to learn general learning rules
that during test-time can be applied to vastly different environments. A strict
separation between the policy and the learning rule, the functional form of the
latter, and training across many environments all contribute to this. Regarding
the former, a clear separation between the policy and the learning rule as in
MetaGenRL is expected to be advantageous for two reasons. Firstly, it allows
us to specify the number of parameters of the learning rule independent of the
policy and critic parameters. For example, our implementation of L, uses only
15K parameters for the objective function compared to 384K parameters for the
policy and critic. Hence, we are able to only use a short description length for
the learning rule. A second advantage that is gained is that the meta-learner is
unable to directly change the policy and must, therefore, learn to make use of
the objective function. This makes it difficult for the meta-learner to overfit to
the training environments.

Computational cost Sample efficiency is an important factor to consider when
designing meta-learning systems. This is due to either limited data availability
or the high cost of environment interactions in many RL settings, such as with
the physical world or in complex simulations. After considering sample effi-
ciency, the compute and space cost of meta-training and meta-testing should
be considered. Here, we can directly analyze the complexity of each iteration
step, whereas the overall computational cost can be estimated based on our em-
pirical number of iterations until convergence. An iteration of meta-training in
MetaGenRL consists of several stages with various runtime complexities. Data

26 2.4 Related work

collection has a complexity of O(NpN;N,) where Np is the size of the agent
population, N; is the number of newly collected transitions per agent, and N,
is the number of floating point operations in a forward pass of an agent 7. The
critic update has a complexity of O(NpNg(NNy + Ny)) where N is the number
of transitions sampled from the buffer B and N, is the number of floating point
operations in a forward pass of the critic. Policy learning has a complexity of
O(NpNg(N, + N,)) where N, is the number of floating points operations in a
forward pass of the objective function L,,. Finally, the objective function update
has a complexity of O(NpNg(NyN, + Ny)) due to the second order gradient
V.V, in Equation 2.6. In total, meta-training has an iteration runtime complex-
ity of O(Np(NsNy + Np(NyN, + Ny))). Space complexity is dominated by the
size of the buffer B. In contrast, meta-testing is significantly cheaper. Each itera-
tion involves only a single agent, and no objective function update, resulting in
a computational complexity of O(N;N, + Ng(Ng + Ny + N,)). Arguably, this
is the more relevant computational complexity when the meta-learned learning
algorithms generalizes well, as intended in this work.

2.4 Related work

Among the earliest pursuits in meta-learning are meta-hierarchies of genetic al-
gorithms [Schmidhubel], [1987] and learning update rules in supervised learn-
ing [Bengio et al), T99T1]. While the former introduced a general framework of
entire meta-hierarchies, it relied on discrete non-differentiable programs. The
latter proposed local update rules that included free parameters, which could
be learned using gradients in a supervised setting. Schmidhuber [1993b] con-
ceptualized a differentiable self-referential RNN that could address and modify
its own weights.

Hochreiter et al] [2001] introduced differentiable meta-learning using RNNs to
scale to larger problem instances, today known as in-context learning. By giving
an RNN access to its prediction error, it could implement its own meta-learning
algorithm, where the weights are the meta-learned parameters, and the hidden
states the subject of learning. This was later extended to the RL setting [Wang
et all, 2016; Duan et al], 2076; Santoro et all, 2016¢; Mishra et al], 2018] (here
refered to as RL?). As we show empirically in our work, meta-learning with
RL? does not generalize well. It lacks a clear separation between policy and
objective function, which makes it easy to overfit on training environments. This
is exacerbated by the imbalance of O(n?) meta-learned parameters to learn O(n)
activations, unlike in MetaGenRL.

27 2.4 Related work

Many other recent meta-learning algorithms learn a policy parameter initializa-
tion that is later fine-tuned using a fixed reinforcement learning algorithm [Finn
et al!, 2017; Schulman et al!, 2017; Grant et al], 2018; Yoon et al], 2018]. Dif-
ferent from MetaGenRL, these approaches use second order gradients on the
same policy parameter vector instead of using a separate objective function. Al-
beit in principle general [Finn and Leving, 2018], it was later shown that these
approaches perform more feature reuse than meta-learning, relying largely on
the human-engineered learning algorithm [Raghu et al), 2020].

Objective functions have been learned prior to MetaGenRL. Houthooft et al!
[2018] evolve an objective function that is later used to train an agent. Unlike
MetaGenRL, this approach is extremely costly in terms of the number of environ-
ment interactions required to evaluate and update the objective function. Most
recently, Bechtle et all [2021] introduced learned loss functions for reinforce-
ment learning that also make use of second-order gradients, but use a policy
gradient estimator instead of a Q-function. Similar to other work, their focus is
only on narrow task distributions. Learned objective functions have also been
used for learning unsupervised representations [Metz et al], 2019a], DDPG-like
meta-gradients for hyperparameter search [Xu et al], 2018], and learning from
human demonstrations [Yu et al], 20T8]. Concurrent to our work, Alet et al!
[2020] uses techniques from architecture search to search for viable artificial
curiosity objectives that are composed of primitive objective functions.

Li and Malik [2017] and Andrychowicz et al] [2016] conduct meta-learning by
learning optimizers that update parameters ¢ by modulating the gradient of some
fixed objective function L: A¢ = f,(V L) where « is learned. They differ from
MetaGenRL in that they only modulate the gradient of a fixed objective function
L instead of learning L itself.

Another connection exists to meta-learned intrinsic reward functions [Niekum
etall, 2017; Zhengetal], 2018; Jaderberg et al], 2019] which are related to earlier
work on subgoal generation [Schmidhuber, 1991k; Wiering and Schmidhuber,
19964; Singh et all, 2004]. Choosing V4L, = V;, Zthl 7(7), where 7, is a
meta-learned reward and V, is a gradient estimator (such as a value based or
policy gradient based estimator) reveals that meta-learning objective functions
includes meta-learning the gradient estimatior V itself as long as it is expressible
by a gradient V4 on an objective L,. In contrast, for intrinsic reward functions,
the gradient estimator V is normally fixed.

Finally, we note that positive transfer between different tasks (reward functions)
as well as environments (e.g. different Atari games) has been shown previously

28 2.5 Experiments

Table 2.1: An evaluation of MetaGenRL and baselines across various meta-
training and meta-testing regimes. Mean return across multiple seeds (Meta-
GenRL: 6 meta-train x 2 meta-test seeds, RL?: 6 meta-train x 2 meta-test seeds,
EPG: 3 meta-train x 2 meta-test seeds) obtained by training randomly initialized
agents during meta-test time on previously seen environments (cyan) and on
unseen environments (). Boldface highlights the best meta-learned algo-
rithm. The mean returns (6 seeds) of several human-engineered algorithms are
also listed.

Training \Testing Cheetah Hopper Lunar
Cheetah & Hopper MetaGenRL 2185 2439 18
EPG -571 20 -540
RL? 5180 289 -479
Lunar & Cheetah MetaGenRL 2552 2363 258
EPG -701 8 -707
RL® 2218 5 283
Lunar & Hopper & Walker & Ant MetaGenRL (40 agents) 3106 2869 201
Cheetah & Lunar & Walker & Ant 3331 2452 -71
Cheetah & Hopper & Walker & Ant 2541 2345 -148
PPO 1455 1894 187
DDPG /TD3 8315 2718 288
off-policy REINFORCE (GAE) -88 1804 168
on-policy REINFORCE (GAE) 38 565 120

in the context of transfer learning [Kistler et all, [1997; Parisotto et all, 20T5;
Rusu et all, 2076, 2019; Nichol et all, 20T8] and meta-critic learning across
tasks [Sung et all, 20T7]. In contrast to this work, the approaches that have
shown to be successful in this domain rely entirely on human-engineered learn-
ing algorithms.

2.5 Experiments

We investigate the learning and generalization capabilities of MetaGenRL on sev-
eral continuous control benchmarks including HalfCheetah (Cheetah) and Hop-
per from MujoCo [[Todorov et al], 2012], and LunarLanderContinuous (Lunar)
from OpenAl gym [Brockman et all, 2016]. These environments differ signifi-
cantly in terms of the properties of the underlying system that is to be controlled,
and in terms of the dynamics that have to be learned to complete the environ-
ment. Hence, by training meta-RL algorithms on one environment and testing
on other environments they provide a reasonable measure of out-of-distribution

29 2.5 Experiments

generalization.

In our experiments, we will mainly compare to EPG [Houthooft et al), 2018]
and to RL? [Duan et al], 2016; Wang et al], 2016] to evaluate the efficacy of our
approach. We will also compare to several fixed model-free RL algorithms to
measure how well the algorithms meta-learned by MetaGenRL compare to these
handcrafted alternatives. Unless otherwise mentioned, we will meta-train Meta-
GenRL using 20 agents that are distributed equally over the indicated training
environments?. Meta-learning uses clipped double-Q learning, delayed policy
& objective updates, and target policy smoothing from TD3 [Fujimoto et al],
2018]. We will allow for 600K environment interactions per agent during meta-
training and then meta-test the objective function for 1M interactions. Further

details are available in Bection A.2.

2.5.1 Comparison to prior work

Evaluating on previously seen environments \We meta-train MetaGenRL on
Lunar and compare its ability to train a randomly initialized agent at test-time
(i.e. using the learned objective function and keeping it fixed) to DDPG, PPO,
and on- and off-policy REINFORCE (both using GAE [Schulman et all, 2015b])
across multiple seeds. shows that MetaGenRL markedly outper-
forms both the REINFORCE baselines and PPO. Compared to DDPG, which
finds the optimal policy, MetaGenRL performs only slightly worse on average
although the presence of outliers increases its variance. In particular, we find
that some meta-test agents get ‘stuck’ for some time before reaching the optimal
policy (see for additional analysis). Indeed, when evaluating only
the best meta-learned objective function that was obtained during meta-training
(MetaGenRL (best objective func) in Figure 2.33) we are able to observe a strong

reduction in variance and even better performance.

We also report results (Figure 2.3d) when meta-training MetaGenRL on both Lu-
nar and Cheetah, and compare to EPG and RL? that were meta-trained on these
same environmentsf. For MetaGenRL we were able to obtain similar perfor-
mance to meta-training on only Lunar in this case. In contrast, for EPG it can be
observed that even one billion environment interactions is insufficient to find a

>An ablation study in revealed that a large number of agents is indeed required.

®In order to ensure a good baseline we allowed for a maximum of 100M environment in-
teractions for RL2 and 1B for EPG, which is more than eight / eighty times the amount used
by MetaGenRL. Regarding EPG, this did require us to reduce the total number of seeds to 3
meta-train x 2 meta-test seeds.

30 2.5 Experiments

Testing on Lunar Testing on Hopper

3500

3000

2500

2000

A
—— MetaGenRL (t Cheetah & Lunar)
MetaGenRL (t Lunar)
—— MetaGenRL (best objective func)
—— DDPG/TD3 1000
—— off-policy REINFORCE (with GAE)
—— on-policy REINFORCE (with GAE)
PPO
—— EPG (t Cheetah & Lunar)
RL? (+ Cheetah & Lunar) 0

Mean return
Mean return

1500

500

0.0M 0.2M 0.4M 0.6M 0.8M 1.0M 0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Environment interactions Environment interactions

(a) Previously seen Lunar environment. (b) Unseen Hopper environment.

Figure 2.3: MetaGenRL uniquely generalize to completely unseen environ-
ments with different observations, actions, and dynamics. Comparing the test-
time training behavior of the meta-learned objective functions by MetaGenRL to
other (meta) reinforcement learning algorithms. We train randomly initialized
agents on (a) environments that were encountered during training, and (b) on
significantly different environments that were unseen. Training environments
are denoted by { in the legend. All runs are shown with mean and standard
deviation computed over multiple random seeds (MetaGenRL: 6 meta-train x
2 meta-test seeds, RL%: 6 meta-train x 2 meta-test seeds, EPG: 3 meta-train x 2
meta-test seeds, and 6 seeds for all others).

good objective function (in quickly dropping below -300). Finally,
we find that RL? reaches the optimal policy after 100 million meta-training iter-
ations, and that its performance is unaffected by additional steps during testing
on Lunar. We note that RL? does not separate the policy and the learning rule
and indeed in a similar ‘within distribution” evaluation, RL? was found success-
ful [Wang et all, 2016; Duan et all, 2076].

provides a similar comparison for two other environments. Here we
find that in general MetaGenRL is able to outperform the REINFORCE baselines
and PPO, and in most cases (except for Cheetah) performs similar to DDPGH.
We also find that MetaGenRL consistently outperforms EPG, and often RL2. For
an analysis of meta-training on more than two environments we refer to

flon AT,

"We emphasize that the neural objective function under consideration is unable to imple-
ment DDPG and only uses a constant value estimate (i.e. V4V = 0 by using gradient stopping)
during meta testing.

31 2.5 Experiments

Testing, after 28K steps Testing, after 86K steps Testing, after 100K steps Testing, after 155K steps Testing, after 199K steps

2000 2000 §

N

2500 2500 ()
3 2000 ! 3 2000
§ 1500 MAEE 5 500

H) H

1000 1000
500 y 500

—— Meta-Training with 20 Agents on Cheetah & Lunar

25K 50K 75K 100K 125K 150K 175K 200K
Environment interactions per agent in the training population

Figure 2.4: We visualize how meta-test time behavior improves over the course
of meta-training. Meta-training with 20 agents on Cheetah and Lunar. We test
the objective function at five stages of meta-training by using it to train three
randomly initialized agents on Hopper.

Generalization to vastly different environments We evaluate the same objec
tive functions learned by MetaGenRL, EPG and the recurrent dynamics by RL?
on Hopper, which is significantly different compared to the meta-training envi-
ronments. shows that the learned objective function by MetaGenRL
continues to outperform both PPO and our implementations of REINFORCE,
while the best performing configuration is even able to outperform DDPG.

When comparing to related meta-RL approaches, we find that MetaGenRL is
significantly better in this case. The performance of EPG remains poor, which
was expected given what was observed on previously seen environments. On
the other hand, we now find that the RL? baseline fails completely (resulting in
a flat low-reward evaluation), suggesting that the learned learning rule that was
previously found to be successful is in fact entirely overfitted to the environments
that were seen during meta-training. We were able to observe similar results
when using different train and test environment splits as reported in [Table 2.7],

and in Bection AT].

2.5.2 Analysis

Meta-Training Progression of Objective Functions

Previously we focused on test-time training randomly initialized agents using an
objective function that was meta-trained for a total of 600 K" steps (corresponding
to a total of 12 environment interactions across the entire population). We will
now investigate the quality of the objective functions during meta-training.

32 2.5 Experiments

(a) Meta-training on Lunar & Cheetah (b) Meta-testing on Cheetah

Figure 2.5: Ablating the objective function inputs. We meta-train MetaGenRL
using several alternative parametrizations of L, on a) Lunar and Cheetah, and
b) present results of testing on Cheetah. During meta-training a representative
example of a single agent population is shown with shaded regions denoting
standard deviation across the population. Meta-test results are reported as per
usual across 6 meta-train x 2 meta-test seeds.

displays the result of evaluating an objective function on Hopper at dif-
ferent intervals during meta-training on Cheetah and Lunar. Initially (28K steps)
it can be seen that due to lack of meta-training there is only a marginal improve-
ment in the return obtained during test time. However, after only meta-training
for 86 K steps we find (perhaps surprisingly) that the meta-trained objective func-
tion is already able to make consistent progress in optimizing a randomly initial-
ized agent during test-time. On the other hand, we observe large variances at
test-time during this phase of meta-training. Throughout the remaining stages of
meta-training we then observe an increase in convergence speed, more stable
updates, and a lower variance across seeds.

Ablation study

We conduct an ablation study of the neural objective function that was described
in Section 2.3.7. In particular, we assess the dependence of L, on the value esti-
mates V;,V;,1 and on the time component that could to some extent be learned.
Other ablations, including limiting access to the action chosen or to the received
reward, are expected to be disastrous for generalization to any other environ-
ment (or reward function) and therefore not explored.

Dependence on ¢ We use a parameterized objective function of the form

Lo(ag, e, Vi, m(se)|t €0,...,T—1)asin except that it does not receive
information about the time-step ¢ at each step. Although information about the

33 2.5 Experiments

3500
8000 MetaGenRL using 3 gradient

3000 —— MetaGenRL using 5 gradient

2500
5 2000
$ 1500

1000

500

Environment interactions Environment interactions

Figure 2.6: Ablating the inner gradient steps. We meta-train MetaGenRL on
the LunarLander and HalfCheetah environments using one, three, and five inner
gradient steps on ¢. Meta-test results are reported across 3 meta-train x 2 meta-
test seeds.

current time-step is required in order to learn (for example) a generalized advan-
tage estimate [Schulman et all, 201T5b], the LSTM could in principle learn such
time tracking on it own, and we expect only minor effects on meta-training and

during meta-testing. Indeed in it can be seen that the neural objec
tive function performs well without access to ¢, although it converges slower on
Cheetah during meta-training (Figure 2.5d).

Dependence on V' We use a parameterized objective function of the form
Lo(ag, ry,t,me(s)[t €0,...,T—1)asin except that it does not receive
any information about the value estimates at time-step ¢. There exist reinforce-
ment learning algorithms that work without value function estimates (eg. Amari
[1T967]; Williams [1992]; Schmidhuber and Zhao [1999]), although in the ab-
sence of an alternative baseline these often have a large variance. Similar re-
sults are observed for this ablation in during meta-training where a
possibly large variance appears to affect meta-training. Correspondingly during
test-time (Figure 2.50) we do not find any meaningful training progress to take
place. In contrast, we find that we can remove the dependence on one of the
value function estimates, i.e. remove V. but keep V;, which during some runs
even increases performance.

Multiple gradient steps

We analyze the effect of making multiple gradient updates to the policy using L,
before applying the critic to compute second-order gradients with respect to the

objective function parameters as in Equation 2.6. While in previous experiments

34 2.6 Conclusion

we have only considered applying a single update, multiple gradient updates
might better capture long term effects of the objective function. At the same time,
moving further away from the current policy parameters could reduce the overall
quality of the second-order gradients. Indeed, in it can be observed
that using 3 gradient steps already slightly increases the variance during test-
time training on Hopper and Cheetah after meta-training on LunarLander and
Cheetah. Similarly, we find that further increasing the number of gradient steps
to 5 harms performance.

2.6 Conclusion

We have presented MetaGenRL, a novel off-policy gradient-based meta rein-
forcement learning algorithm that leverages a population of DDPG-like agents
to meta-learn general objective functions. Unlike related methods the meta-
learned objective functions do not only generalize in narrow task distributions
but show similar performance on entirely different tasks while markedly out-
performing REINFORCE and PPO. We have argued that this generality is due
to MetaGenRL's explicit separation of the policy and learning rule, the func
tional form of the latter, and training across multiple agents and environments.
Furthermore, the use of second order gradients increases MetaGenRL's sample
efficiency by several orders of magnitude compared to EPG [Houthooft et all,
2018].

An exciting direction for future work is to further expand the expressivity of the
meta-learned objective functions. Indeed, in our current implementation, the
objective function is unable to observe the environment or the hidden state of
the (recurrent) policy. These extensions are especially interesting as they may
allow more complicated curiosity-based [Schmidhuber, [1991a; Houthooft et al|,
2018; Pathak et al!, 20T7] or model-based [Schmidhuber, [T990; Racaniéere et all,
2017; Ha and Schmidhuber, 2018] algorithms to be learned. To this extent, it
will be important to develop introspection methods that analyze the learned
objective function and to scale MetaGenRL to make use of many more environ-
ments and agents.

2.7 Follow-up work

Since the publication of MetaGenRL, several works have been exploring the au-
tomatic discovery of reinforcement learning algorithms with a strong focus on

35 2.7 Follow-up work

generalizability of the learned learning algorithms. For example, researchers
have meta-learned artificial curiosity algorithms [Alet et all, 2020] and reinforce-
ment learning algorithms [Co-Reyes et all, 2021]] by describing them using sym-
bolic objective functions. In the space of meta-gradients, Oh et al] [2020] have
searched over an expressive space of objective functions that can also represent
value functions, showing strong performance and generalization to unseen en-
vironments. [Lu et al] [2022] have used evolutionary algorithms to search over
PPO-like policy gradient algorithms with a more constrained search space, lead-
ing to the discovery of more interpretable and generalizable algorithms.

36

2.7 Follow-up work

Chapter 3

VSML: Meta-learning
backpropagation and improving it

Keywords in-context learning, backpropagation, supervised learning, fast weight pro-
grammers
Article Kirsch and Schmidhuber [2021]] (preprint 2020)

Our previously proposed MetaGenRL (Chapter 2) still relies on the known back-
propagation algorithm to optimize an objective function at meta-test time. This
reliance on backpropagation may limit the learning algorithms that can be au-
tomatically discovered. How can we further reduce the inductive biases in the
learning algorithms that we discover? In VSML, we investigate the implementa-
tion of the entire learning algorithm and inference in a neural network without
any hardcoded gradient descent, which we refer to as in-context learning. In
contrast to previous research, our objective is to discover new general-purpose
in-context learning algorithms that can be applied to a wide range of tasks.

3.1 Introduction

The shift from standard machine learning to meta-learning involves learning the
learning algorithm (LA) itself, reducing the burden on the human designer to
craft useful learning algorithms [Schmidhuber, T987]. Recent meta-learning has
primarily focused on generalization from training tasks to similar test tasks, e.g.,
few-shot learning [Finn et al], 2017], or from training environments to similar
test environments [Houthooft et al!, 2018]. This contrasts human-engineered
LAs that generalize across a wide range of datasets or environments. With-

37

38 3.1 Introduction

out such generalization, meta-learned LAs can not entirely replace human-
engineered variants. More recently, meta-learning was demonstrated to also
successfully generate more general LAs that generalize across wide spectra of
environments [Kirsch et all, 2020b; Alet et all, 2020; Oh et al], 2020], e.g., from
toy environments to Mujoco and Atari.

Unfortunately, however, many recent approaches, such as our previously pro-
posed MetaGenRL (Chapter 2), still rely on a large number of human-designed
and unmodifiable inner-loop components such as backpropagation. How could
we further reduce the inductive biases in our discovered learning algorithms?
One approach is to implement the entire learning algorithm and inference in
a neural network, such as an RNN or a Transformer. Today, this is commonly
known as in-context learning [Brown et al), 2020], but has also been referred to
as memory-based learning [Duan et all, 2016¢; Wang et all, 2016; Ortega et all,
2019] or black-box learning-to-learn [Kirsch and Schmidhuber, 2021]]. Although
this is an expressive method of meta-learning, it also quickly leads to overfitting
and poses difficulties in meta-learning learning algorithms that can be applied
to completely unseen tasks. Such a generalization has not been demonstrated
prior to this work.

Our objective then is to discover novel general-purpose learning algorithms
purely by using in-context learning. To this end, is it possible to implement
modifiable versions of backpropagation or related algorithms as part of the end-
to-end differentiable activation dynamics of a neural net (NN), instead of insert-
ing them as separate fixed routines? Here, we propose the Variable Shared Meta
Learning (VSML) principle for this purpose. It introduces a novel way of using
sparsity and weight-sharing in NNs for meta-learning. We build on the arguably
simplest neural meta-learner, an in-context learner in the form of a recurrent neu-
ral network (in-context RNN / Meta RNN) [Hochreiter et al], 2001; Duan et all,
2016; Wang et all, 2016], by replicating the RNN many times. The resulting
system can be viewed as many RNNs passing messages to each other, or as one
big RNN with a sparse shared weight matrix, or as a system meta-learning the
functionality and learning algorithm of each neuron in another neural network.
VSML generalizes the principle behind end-to-end differentiable fast weight pro-
grammers [Schmidhuber, 1992b, 19934; Ba et all, 2016a; Schlag et al), 20211],
hyper networks [Ha et all, 2077], learned learning rules [Bengio et al), 1992;
Gregor, 2020; Randazzo et all, 2020], and hebbian-like synaptic plasticity [Mi-
coni et all, 2018; Najarro and Risi, 2020].

Our mechanism, VSML, can implement backpropagation solely in the forward-

39 3.2 Background

dynamics of an RNN. Consequently, it enables meta-optimization of backprop-
like algorithms. We envision a future where novel methods of credit assignment
can be meta-learned while still generalizing across vastly different tasks. This
may lead to improvements in sample efficiency, memory efficiency, continual
learning, and others. As a first step, our system meta-learns online in-context
LAs from scratch that frequently learn faster than gradient descent and gener-
alize to datasets outside of the meta-training distribution (e.g., from MNIST to
Fashion MNIST). VSML is the first neural in-context learner without hardcoded
backpropagation that shows such strong generalization. Introspection reveals
that our meta-learned LAs learn through fast association in a way that is qualita-
tively different from gradient descent.

3.2 Background

Deep learning-based meta-learning that does not rely on fixed gradient descent
in the inner loop has historically fallen into two categories, 1) Learnable weight
update mechanisms that allow for changing the parameters of an NN to im-
plement a learning rule (Fast Weight Programmers, FWPs), and 2) Learning al-
gorithms implemented in black-box models such as recurrent neural networks
(in-context RNNs), now commonly known as in-context learning.

Fast weight programmers (FWPs) In a standard NN, the weights are updated
by a fixed LA. This framework can be extended to meta-learning by defining
an explicit architecture that allows for modifying these weights. This weight-
update architecture augments a standard NN architecture. NNs that generate
or change the weights of another or the same NN are known as fast weight
programmers (FWPs) [Schmidhuber, 1992b, 1993a; Ba et all, 2016a; Schlag
and Schmidhuber, 20T7], hypernetworks [Ha et al), 2017], NNs with synaptic
plasticity [Miconi etal], 2018, 2019; Najarro and Risi, 2020] or learned learning
rules [Bengio et all, [1991]; Gregor, 2020; Randazzo et al], 2020]. Often these
architectures make use of local Hebbian-like update rules or outer-products, and
we summarize this category as FWPs. In FWPs the variables V7, that are subject
to learning are the weights of the network, whereas the meta-variables V, that
implement the LA are defined by the weight-update architecture. Note that the
dimensionality of V7, and V}; can be defined independently of each other and
often V) are reused in a coordinate-wise fashion for V7, resulting in |V | > V)|,
where | - | is the number of elements.

40 3.3 Variable Shared Meta Learning (VSML)

In-context / Black-box learning It was shown that a black-box neural network
such as an LSTM or Transformer can learn to implement an LA [Hochreiter et all,
200T] when the reward or error is given as input [Schmidhuber, 19930]. After
meta-training, the LA is encoded in the weights 6 of the model and determines in-
context learning during meta-testing. The activations serve as the memory used
for the LA solution. In-context learners are conceptually simpler than FWPs
as no additional weight update rules with many degrees of freedom need to be
defined. Here, we focus on recurrent in-context learners, referred to as in-context
RNNs [Hochreiter et al], 2001]; Duan et all, 2016; Wang et al., 2016].

Overfitting of in-context RNNs An in-context RNN with N neurons has O(N)
activations (used for inner learning, referred to as learned variables V7). In con-
trast, there are O(N?) parameters 6 (used for meta-learning, referred to as meta
variables V). This means that the learning algorithm is largely overparameter-
ized, whereas the available memory for learning is very small, making this ap-
proach prone to overfitting [Section 2.3.3 Kirsch et all, 2020kb]. As a result, RNN
parameters often encode task-specific solutions instead of generic LAs. Meta-
learning a simple and generalizing LA would benefit from |V| > |Vi,|. A large
|VL| is also required to allow the discovered learning algorithm to learn and
store complex processes. Previous approaches have tried to solve this problem
by adding architectural complexity through external memory mechanisms [Sun,
1991; Mozer and Das, 1993; Santoro et al], 20T6; Mishra et al!, 20T18; Schlag
et al], 20271D].

In-context learning

Terminology: The concept of in-context learning has appeared in the
literature under many different names. We use the following terms inter-
changeably

* in-context learning

* memory-based meta-learning

* black-box meta-learning

3.3 Variable Shared Meta Learning (VSML)

In VSML we build on the simplicity of in-context learning RNNs while ensuring
that |Vz| > |Vis|. We do this by reusing the same few parameters V,; := 6
many times in an RNN and introducing sparsity in the connectivity. This yields

41 3.3 Variable Shared Meta Learning (VSML)

(a) Viewed as (b) Viewed as
a single RNN (struc- many sub-RNNs with (¢ Viewed as an NN with
tured weight matrix) message passing meta-learned complex neurons

Figure 3.1: Different perspectives on VSML: (a) A single in-context
RNN [Hochreiter et all, 200T] where entries in the weight matrix are shared
or zero. (b) VSML consists of many sub-RNNs with shared parameters 6
passing messages between each other. (c) VSML implements an NN with
complex neurons (here 2 neurons). 6 determines the nature of weights, how
these are used in the neural computation, and the LA by which those are up-
dated. Each weight w,, € R is represented by the multi-dimensional RNN state
say € RY. Neuron activations correspond to messages 1 passed between sub-
RNNs.

several interpretations for VSML:

VSML as a single in-context RNN with a sparse shared weight matrix
(Figure 3.1d). The most general description.

VSML as message passing between RNNs (Figure 3.1b). We choose a

simple sharing and sparsity scheme for the weight matrix such that it cor-
responds to multiple RNNs with shared parameters that exchange infor-
mation.

VSML as complex neurons with learned updates (Figure 3.7d). When

choosing a specific connectivity between RNNss, states / activations V7, of
these RNNs can be interpreted as the weights of a conventional NN, conse-
quently blurring the distinction between a weight and an activation. The
learned state updates (in-context learning) may then implement learned
weight updates (FWPs).

Introducing variable sharing to in-context RNNs We begin by formalizing in-
context RNNs which often use multiplicative gates such as the LSTM [Gers et al],
2000b; Hochreiter and Schmidhuber, 19974] or its variant GRU [Cho et all,
2014]. For notational simplicity, we consider a vanilla RNN. Let s € RY be

42 3.3 Variable Shared Meta Learning (VSML)

the hidden state of an RNN. The update for an element j € {1,..., N} is given
by

S <— fRNN(S)j = O'(Z SZ'VVU), (31)
where o is a non-linear activation function, W € R¥*¥ and the bias is omitted
for simplicity. We also omit inputs by assuming a subset of s to be externally

provided. Each application of reflects a single time tick in the
RNN.

We now introduce variable sharing (reusing W) into the RNN by duplicating
the computation along two axes of size A, B (here A = B, which will later be
relaxed) giving s € RA*B*N Fora € {1,...,A},b € {1,..., B} we have

Sabj <= JRNN(Sab)j = U(Z SabiWij)- (3.2)

i

This can be viewed as multiple RNNs arranged on a 2-dimensional grid, with
shared parameters that update independent states. Here, we chose a particular
arrangement (two axes) that will facilitate the interpretation of RNNs as
weights.

VSML as message passing between RNNs The computation so far describes
A- B independent RNNs. We connect those by passing messages (interpretation
(MP))

Sab fRNN(Sabyma); (3.3)

where the message 71, = 3., fii(saa) Witha € {1,..., A = B}, fz : RN —
RM" is fed as an additional input to each RNN. This is related to Graph Neural
Networks [Sperduti, [1994; Wu et al], 2020]. Summing over the axis A (elements
a’) corresponds to an RNN connectivity mimicking those of weights in an NN
(to facilitate interpretation (CN)). We emphasise that other schemes based on
different kinds of message passing and graph connectivity are possible. For a
simple f5; defined by the matrix C' € R¥*¥ we may equivalently write

Sabj U(Z SabiWij + Z [(8ara)j) = U(Z SapiWij + Z SaraiCij). (3.4)

7

7 a’i

This constitutes the minimal version of VSML with 6 := (W, C') and is visualized

in Figare 3.T8.

43 3.3 Variable Shared Meta Learning (VSML)

VSML as an in-context RNN with a sparse shared weight matrix It is trivial
to see that with A = 1 and B = 1 we obtain a single RNN and
recovers the original in-context RNN Equation 3.1]. In the general case, we can
derive an equivalent formulation that corresponds to a single standard RNN with
a single matrix T that has entries of zero and shared entries

Sabj < U(Z Scdichiabj)a (35)
c,d,i
where the six axes can be flattened to obtain the two axes. For and
to be equivalent, W must satisfy (derivation in Section B.1)
Cij, ifd=aNn(d#bVc#a).
~ Wi, ifd4aNd=bAc=a.
Weaiabj = § " e (3.6)
Cij + Wi, ifd=and=bAc=a.
0, otherwise.

This corresponds to interpretation with the weight matrix visualized in
Figure 3.13. To distinguish between the single sparse shared RNN and the con-
nected RNNs, we now call the latter sub-RNNss.

VSML as complex neurons with learned updates The arrangement and con-
nectivity of the sub-RNNs as described in the previous paragraphs corresponds
to that of weights in a standard NN. Thus, in interpretation (CN), VSML can
be viewed as defining complex neurons where each sub-RNN corresponds to a
weight in a standard NN as visualized in Figure 3.Td. All these sub-RNNs share
the same parameters but have distinct states. The previous corre-
sponds to a single NN layer that is run recurrently. We will generalize this to
other architectures in the next section. A corresponds to the dimensionality of
the inputs and B to that of the outputs in that layer.

The role of weights in a standard neural network is now assigned to the states of
RNNs. This allows these RNNs to define both the neural forward computation
as well as the learning algorithm that determines how the network is updated
(where the mechanism is shared across the network). In the case of backprop-
agation, this would correspond to the forward and backward passes being im-
plemented purely in the recurrent dynamics. We will demonstrate the practical
feasibility of this in Section 3.3.2. The emergence of RNN states as weights
quickly leads to confusing terminology when RNNs have ‘meta weights’. In-
stead, we simply refer to the RNN ‘weights’ § as meta variables V}; and the
RNN activations as learned variables V.

44 3.3 Variable Shared Meta Learning (VSML)

AD =38
Bl LsTMs with state 5'))
BV=4®=4 [P LSTMs
with state si) B®=3
=
Layer 2
Inputs x v\ Y 3 classes
Layer 1 N
- BElrectlonal Outputs §
H m forward dL
P
C| m , forward msg, i1, backward msg, m backward @ Error at outputs
here 2 dimensional here 2 dimensional

Figure 3.2: The neural interpretation of VSML replaces all weights of a standard
NN with tiny LSTMs using shared parameters (resembling complex neurons).
This allows these LSTMs to define both the neural forward computation as well
as the learning algorithm that determines how the network is updated. Infor-
mation flows forward and backward in the network through multi-dimensional
messages 1 and 77, generalizing the dynamics of an NN trained using back-
propagation.

With this interpretation, VSML can be seen as a generalization of learned
learning rules [Bengio et all, 19971, Gregor, 2020; Randazzo et all, 2020] and
Hebbian-like differentiable mechanisms or fast weight programmers (FWPs)
more generally [Schmidhuber, 1992b, [1993a; Miconi et all, 2018, 2019] where
RNNSs replace explicit weight updates. The learned state updates in VSML (in-
context learning) may then implement learned weight updates (FWPs). While
more expressive, compared to a simple symbolic learning rule, these learned
weight updates in the form of RNNs are computationally more expensive, which

is something we discuss in more detail in Section 3.7.

In standard NNs, weights and activations have multiplicative interactions. For
VSML RNNs to mimic such computation we require multiplicative interactions
between parts of the state s. Fortunately, LSTMs already incorporate this through
gating and can be directly used in place of RNNs.

Stacking VSML RNNs and feeding inputs To get a structure similar to
one of the non-recurrent deep feed-forward architectures (FNNs), we stack
multiple VSML RNNs where their states are untied and their parameters

45 3.3 Variable Shared Meta Learning (VSML)

are tiedIII This is visualized with two layers in 2 where the
states s?) of the second column of sub-RNNs are dlstlnct from the first
column s, The parameters A%*) and B® describing layer sizes can
then be varied for each layer & € {1,...,K} constrained by A® =
B* =1 The updated with distinct layers % is given by s «
Fran (s 1) where Y = S o (W) with b e {1,..., B®) = AG+DY,
To prevent information from

flowing only forward in the A%=2 B =A% =2 B® =2
network, we use an additional
backward message

s\ Frvn (sl m® fn i),
(3 7)

where %1 . =>4 f#%(ab’)
with « € {1,...,A® =
B0} (v15ual|zed in [Fig]

re_3.3). The backward
transformation is given by
fim : RV — RN, Figure 3.3: A more detailed visualization of

VSML. It visualizes the forward messages i
and backward messages T to form a two-layer
NN with shared LSTM parameters but distinct
states.

Similarly, other architectures
can be explicitly constructed
(e.g. convolutional NNs, [Fig]
ure B.2.2). Some architectures
may be learned implicitly if po-
sitional information is fed into each sub-RNN (Section B.3). We then update all
states s*) in sequence 1,..., K to mimic sequential layer execution. We may
also apply multiple RNN ticks for each layer k.

To provide the VSML RNN with data, each time we execute the operations of the
first layer, a single new datum z € R4 (e.g. one flattened image) is distributed
across all sub-RNNs. In our present experiments, we match the axis A(1) to
the input datum dimensionality such that each dimension (e.g., pixel) is fed to
different RNNSs. This corresponds to initializing the forward message mg? = X
(padding 7t with zeros). Similarly, we read the output § € RBEE) from ya =
mUn, FmaIIy, we feed the error e € RP®) at the output such that ‘n_lbl =

€. See 2| for a visualization. Alternatively, multiple input or output
dimensions could be patched together and fed into fewer sub-RNNss.

"The resultant architecture as a whole is still recurrent. Note that even standard FNNs are
recurrent if the LA (backpropagation) is taken into account.

46 3.3 Variable Shared Meta Learning (VSML)

3.3.1 Meta-learning general-purpose learning algorithms from
scratch

Having formalized VSML, we can now use end-to-end meta-learning to cre-
ate LAs from scratch in Algorithm §. We simply optimize the LSTM parame-
ters 6 to minimize the sum of prediction losses over many datapoints (z,y) €
{(x1,11),...,(xr,yr)} C D starting with random states V7, := {3((1’2)} We fo-
cus on meta-learning online LAs where one example is fed at a time as done
in in-context RNNs [Hochreiter et al!, 200T; Wang et al], 20T6; Duan et all,
2016]. Meta training may be performed using end-to-end gradient descent or
gradient-free optimization such as evolutionary strategies [Wierstra et all, 2008;
Salimans et al], 20T17]. The latter is significantly more efficient on VSML com-
pared to standard NNs due to the small parameter space 6. Crucially, during
meta-testing, no explicit gradient descent is used. In this phase, LSTM states are
updated and messages are passed corresponding to the instructions in the blue

box in AATgorTthim 8.

Algorithm 8 VSML: Meta Training

Require: Dataset(s) D = {(x;,v:)}
0 <« initialize LSTM parameters

while meta loss has not converged do > Outer loop in parallel over datasets D
{sfl’z)} < initialize LSTM states ~ Va, b, k

for (x,y) € {(z1,v1),...,(@r,y7)} C D do > Inner loop over T' examples
ﬁgl) =z, Va > Initialize from input image x
forke{l,...,K} do > Iterating over K layers
s o frww (s W AR va,b >
mfﬁ*” = fm(sfﬁg) Vb > Create forward message
a =0 fmsay a > Create backward message

TS y fa (s v Create backward
gl = m STy > Read output
e:=Vy L, y) > Compute error at outputs using loss L
Sn_ll(){() =€, Vb > Input errors

0 0 —aVy>,_, L(y'(t),y(t)), obtaining V, either by
* back-propagation through the inner loop
* evolution strategies, using a search distribution p(6)

47 3.4 Experiments

3.3.2 Learning to implement backpropagation in RNNs

As an alternative to end-to-end meta-learning,
mom we also demonstrated that VSML can imple-
e ment backpropagation in its recurrent dynam-

ics. Due to the algorithm’s ubiquitous use,
it seems desirable to be able to meta-learn
backpropagation-like algorithms. Here we in-
vestigate how VSML can learn to implement
@D backpropagation purely in its recurrent dy-

namics. We do this by optimizing # to (1) store

a weight w and bias b as a subset of each state
Figure 3.4: VSML can imple- , (2) compute y = tanh(z)w + b to imple-
ment backpropagation as a spe- ment neural forward computation, and (3) up-
cial case. To do so, we optimize date w and b according to the backpropaga-
the VSML RNN to use and up- tion algorithm [Linnainmad, T970]. We call
date weights w and biases b as this process learning algorithm cloning and it

part of the state s, in each sub- s visualized in Figure 3.4.
RNN. Inputs are pre-synaptic =

and error e. Outputs are post-
synaptic ¢ and error

We designate an element of each message
meE ﬁgk), fﬁg(sgz)), fﬁ(ng)) as the input z,
error e, and output § and error ¢'. Similarly,
we set w := sq and b := sue. We then opti-
mize 6 via gradient descent to regress i, Aw, Ab, and ¢’ toward their respective
targets. We can either generate the training dataset D := {(z,w, b,y, e, €');} ran-
domly or run a ‘shadow’ NN on some supervised problem and fit the VSML RNN
to its activations and parameter updates. Multiple iterations in the VSML RNN
would then correspond to evaluating the network and updating it via backprop-
agation. The activations from the forward pass necessary for credit assignment
could be memorized as part of the state s or be explicitly stored and fed back.
For simplicity, we chose the latter to clone backpropagation. We continuously
run the VSML RNN forward, alternately running the layers in order 1, ..., K and
in reverse order K,...,1.2

3.4 Experiments

2Executing layers in reverse order is not strictly necessary as information always also flows
backwards through i but makes LA cloning easier.

48

3.4 Experiments

First, we demonstrate the capabili-
ties of the VSML RNN by show-

ing that it can implement neural for-
ward computation and backpropaga- ¢

tion in its recurrent dynamics on the
MNIST [LeCun et al], 20T0] and Fash-
ion MNIST [Xiao et all, 20T7] dataset.
Then, we show how we can meta-
learn an LA from scratch on one set of
datasets and then successfully apply it
to another (out of distribution). Such
generalization is enabled by extensive
variable sharing where we have very
few meta variables |Vj| 2,400
(RNN parameters #) and many learned
variables |V| 257,200. We also
investigate the robustness of the dis-
covered LA. Finally, we introspect the

~
~

~
~

Learning on MNIST
(within distribution)

Learning on Fashion MNIST
(out of distribution)

-= Cloned BP (shallow)

-=- Regular SGD (shallow)
—— Cloned BP (deep)
—— Regular SGD (deep)

2 Hl
> 157
2

l\
© 1041
= 1

N, ae
.U N2 e,
05 SR tspatanay

0.0

40k0k 10k 20k 30k 40k
Gradient step

0k 10k 20k 30k
Gradient step

Figure 3.5: Meta-testing learned back-
propagation in VSML by running the
LSTMs in forward-mode. The VSML
RNN is optimized to implement back-
propagation in its recurrent dynamics
on MNIST, then tested both on MNIST
and Fashion MNIST where it performs
learning purely by unrolling the LSTM.
We test on shallow and deep architec-
tures (single hidden layer of 32 units).
Standard deviations are over 6 seeds.

meta-learned LA and compare it to
gradient descent.

Our implementation uses LSTMs and the message interpretation from
tion 3.7. Hyperparameters, training details, and additional experiments can be
found in the appendix.

3.4.1

As described in Section 3.3.2, we optimize the VSML RNN to implement back-
propagation. We structure the sub-RNNs to mimic a feed-forward NN with
either one hidden layer or no hidden layers. To obtain training targets, we in-
stantiate a standard NN, the shadow network, and feed it MNIST data. After
cloning, we then run the LA encoded in the VSML RNN on the MNIST and
Fashion MNIST dataset and observe that it performs learning purely in its recur-
rent dynamics, making explicit gradient calculations unnecessary.
shows the learning curve on these two datasets. Notably, learning works both
on MNIST (within distribution) and on Fashion MNIST (out of distribution). We
observe that the loss is decently minimized, albeit regular gradient descent still
outperforms our cloned backpropagation. This may be due to non-zero errors
during learning algorithm cloning, in particular when these errors accumulate in

VSML RNNs can implement backpropagation

49

3.4 Experiments

the deeper architecture. It is also possible that the VSML states (‘weights’) devi-
ate too far from ranges seen during cloning, in particular in the deep case when
the loss starts increasing. We obtain 87% (deep) and 90% (shallow) test accu-
racy on MNIST and 76% (deep) and 80% (shallow) on Fashion MNIST (focusing
on successful cloning over performance).

3.4.2 Meta learning supervised learning from scratch

In the previous experiments, we
have established that VSML is ex-
pressive enough to meta-optimize
backpropagation-like algorithms. In-
stead of cloning an LA, we now meta-
learn from scratch as described in
tion 3.3.7]. We use a single layer (K =
1) from input to output dimension and
run it for two RNN ticks per image
with N = 16 and M = = 8.
First, the VSML RNN is meta trained
end-to-end using evolutionary strate-
gies (ES) [Salimans et all, 20T7] on
MNIST to minimize the sum of cross-
entropies over 500 data points starting
from random state initializations. As
each image is unique and # can not
memorize the data, we are implicitly
optimizing the VSML RNN to general-
ize to future inputs given all inputs it
has seen so far. We do not pre-train ¢
with a human-engineered LA.

During meta-testing on MNIST (Fig]
ure 3.6) we plot the cumulative accu-

racy on all previous inputs on the y

Meta Testing on MNIST
(within distribution)

Meta Testing on Fashion MNIST
(out of distribution)

=

500 1000 1500
Total examples seen

-

o
©

o
o

o
IS

— VSML

In-Context RNN
—— Backprop + SGD
—— Backprop + Adam

Cumulative accuracy

e
N

o
o

0 500 1000 1500
Total examples seen

2000 0 2000

Figure 3.6: Meta-learning novel gener-
alizing learning algorithms with VSML.
The VSML RNN can be directly meta
trained on MNIST to minimize the
sum of errors when classifying online
starting from a random state initializa-
tion. This allows for faster learning
during meta-testing compared to on-
line gradient descent with Adam on
the same dataset and even generalizes
to a different dataset (Fashion MNIST).
In comparison, a standard in-context
RNN [Hochreiter et al), 200T] strongly
overfits in the same setting. Standard de-
viations are over 128 seeds.

axis (7 Z;‘le ¢, after example T" with binary ¢; indicating prediction correctness).
For each example, the prediction when this example was fed to the RNN is used,
thus measuring sample efficient learning. This evaluation protocol is similar to
the one used in in-context RNNs [Wang et al!, 2016; Duan et al], 2016]. We
observe that learning is considerably faster compared to the baseline of online

50 3.4 Experiments

gradient descent (no mini batching, the learning rate appropriately tuned). One
possibility is that VSML simply overfits to the training distribution. We reject
this possibility by meta-testing the same unmodified RNN on a different dataset,
here Fashion MNIST. Learning still works well, meaning we have meta-learned
a fairly general LA (although performance at convergence still slightly lacks be-
hind). This generalization is achieved without using any hardcoded gradients
during meta-testing purely by running the RNN forward. In comparison to VSML,
an in-context RNN heavily overfits.

3.4.3 Robustness to varying inputs and outputs

A defining property of VSML

is that the same parameters e dition | oot of ribetion)
f can be used to learn on reterence NN
Varying iNpUtand OUIDUESIZES. - p— E—
Further, the architecture and S e
thus the meta-learned LA is ranom projection wnseer) DRI D

Shuffled inputs (unseen)

invariant to the order of in- L e e
puts and outputs. In this pecurey offist 2 eamples - Accurmcy effrstzk examples
experiment, we investigate Figure 3.7: VSML exhibits strong robustness to
how robust we are to such unseen tasks. The meta-learned learning algo-
changes. We meta train rithm is robust to permutations and size changes
across MNIST with 3, 4, 6, in the inputs and outputs. All six configurations
and 7 classes. Likewise, have not been seen during training and perform
we train across rescaled ver- comparable to the unchanged reference. Stan-
sions with 14x14, 28x28, and dard deviations are over 32 seeds.

32x32 pixels. We also ran-

domly project all inputs using a linear transformation, with the transformation
fixed for all inner learning steps. In we meta test on 6 configurations
that were not seen during meta-training. Performance on all of these config-
urations is comparable to the unchanged reference from the previous section.
In particular, the invariance to random projections suggests that we have meta-
learned a learning algorithm beyond transferring learned representations [com-

pare Finn et al], 2017; [Triantafillou et al), 2020; Tseng et al), 2020].

3.4.4 Varying datasets

To better understand how different meta-training distributions and meta test
datasets affect VSML RNNs and our baselines, we present several different com-

51 3.4 Experiments

Meta Testing on MNIST Meta Testing on Fashion MNIST Meta Testing on EMNIST
MNIST . ' '
Fashion MNIST [F = E

EMNIST F.

kuzushiji MnisT [

Random !

Leave out MNIST E

m VSML

s In-context RNN
mmm HebbianFW
=== FWMemory
== ADAM shallow
= ADAM deep

Leave out Fashion MNIST .

|

Leave out EMNIST 3

i

Meta Training datasets

Leave out Kuzushiji MNIST =

Leave out Random E

All datasets 3
I —

N/A
Meta Testing on Kuzushiji MNIST Meta Testing on Random Meta Testing on Sum Sign

MNIST '
Fashion MNIST ‘
EMNIST !

Kuzushiji MNIST "

Random E__

Leave out MNIST o

Leave out Fashion MNIST =

Leave out EMNIST -~

Leave out Kuzushiji MNIST .

Meta Training datasets
'

Leave out Random =

All datasets —

R e
N/A

Irl" LU Fl‘ " |'-r"

I il ||| .|| ||| ||| ““"r

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Accuracy of first 2k examples Accuracy of first 2k examples Accuracy of first 2k examples

Figure 3.8: An evaluation of VSML’s online learning capabilities across various
datasets. Cumulative accuracy in % after having seen 2k training examples eval-
uated after each prediction starting with random states (VSML, in-context RNN,
HebbianFW, FWMemory) or random parameters (SGD). Standard deviations
are over 32 meta test training runs. Meta testing is done on the official test set
of each dataset. Meta training is on subsets of datasets excluding the Sum Sign
dataset. Unseen tasks, most relevant from a general-purpose LA perspective, are
opaque.

52 3.5 Analysis

binations in Figure 3.8. The opaque bars represent tasks that were not seen
during meta-training and are thus most relevant for this analysis. This includes
four additional datasets: (1) Kuzushiji MNIST [Clanuwat et all, 2018] with 10
classes, (2) EMNIST [Cohen et all, 2017] with 62 classes, (3) A randomly gener-
ated classification dataset (Random) with 20 data points that changes with each
step in the outer loop, and (4) Sum Sign which generates random inputs and
requires classifying the sign of the sum of all inputs. Meta training is done over
500 randomly drawn samples per outer iteration. Each algorithm is meta trained
for 10k outer iterations. Inputs are randomly projected as in (for
VSML; the baselines did not benefit from these augmentations). We again report
the cumulative accuracy on all data seen since the beginning of meta test train-
ing. We compare to SGD with a single layer, matching the architecture of VSML,
and a hidden layer, matching the number of weights to the size of V, in VSML.
We also have included a Hebbian fast weight baseline [Miconi et al}, 2018] and
an external (fast weight) memory approach [Schlag et all, 20210].

We observe that VSML generalizes much better than in-context RNNs, Hebbian
fast weights, and the external memory. These baselines overfit to the training
environments. Notably, VSML even generalizes to the unseen tasks Random
and Sum Sign which have no shared structure with the other datasets. In many
cases VSML's performance is similar to SGD but a little more sample efficient in

the beginning of training (learning curves in Bection B.2). This suggests that our
meta-learned LAs are good at quickly associating new inputs with their labels.

We further investigate this in the next Section 3.5.

3.5 Analysis

Given that VSML seems to learn faster than online gradient descent in many
cases we would like to qualitatively investigate how learning differs. We first
meta train on the full MNIST dataset as before. During meta-testing, we plot
the output probabilities for each digit against the number of samples seen in
Figure 3.9. We highlight the ground truth input class [J as well as the predicted
class (). In this case, our meta test dataset consists of MNIST digits with two
examples of each type. The same digit is always repeated twice. This allows us
to observe and visualize the effect with only a few examples. We have done the

same introspection with the full dataset in Section B.2.

We observe that in VSML almost all failed predictions are followed by the correct
prediction with high certainty. In contrast, SGD makes many incorrect predic-

53 3.5 Analysis

VSML (repeated digits)

-1.0
o b b Y Y b b 2 Y H 0.00 0.00 0.00 0.00 0.00
- b b ! ! b b ! ! 4 0.00 0.04 0.00 0.05 0.01
-0.8
N 0. ! ! ! ! ! ! ! ! 0.15 0.00 0.17 0.02
w ™
U
= 0.6
o< M 4 ! L ! W 4 0.15 0.02
©
Q
[
an b y A 4 y Y ! b y b 4 0.12 0.01
o
o 0.4
Qo b b | ! b b ! W 4 y W 4 0.08 0.01
~ 4 y b ! ! y ! b ! b y 0.14 0.01
0.2
©
(=}
- 0.0
8 9 10 11 12 13
Total samples seen
SGD + Adam (repeated digits) 10
o £ 8 Y 0.03 0.02 0.24 0.30 0.12 0.17
EE 0. ! ! ! ! 0.00 0.00 0.00 0.00 0.00 0.00
-0.8
~ b , H Y Y H H Y 0.00 0.00 0.00 0.00 0.00 0.00
gm Y I y ! 4 J Y Y 0.00 0.00 0.00 0.00 0.00 0.00 b
= 0.6
R oo o 00 oo o @@[TIT)
©
Qo
[
an M ! y ! f J Y b .00 0.00 0.00
=
k= 0.4
0o £ ! y Y Y d Y Y 4 0.00 0.00 0.00
~ b I ! ! ! ! y 4 0.00 0.00 0.00
0.2
@ ! ! Y Y Y . Y b 4 0.00 0.00 0.00
o f I ! y f ! y Y 4 0.00 0.00 0.01
-0.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Total samples seen

Figure 3.9: An introspection of VSML’s discovered learning algorithm. We
introspect how output probabilities change after observing an input and the
prediction error when meta-testing on MNIST with two examples for each type.
We highlight the ground truth class [0 as well as the predicted class (). The
top plot shows VSML quickly associating the input images with the right label,
almost always making the right prediction the second time with high confidence.
The bottom plot shows the same dataset processed by SGD with Adam which
fails to learn quickly.

54 3.6 Related work

tions and fails to adapt correctly in only 20 steps. It seems that SGD learns qual-
itatively different from VSML. The VSML RNN meta-learns to quickly associate
new inputs with their class whereas SGD fails to do so. We tried several different
SGD learning rates and considered multiple steps on the same input. In both
cases, SGD does not behave similar to VSML, either learning much slower or
forgetting previous examples. As evident from the high accuracies in Figure 3.8,
VSML does not only memorize inputs using this strategy of fast association, but
the associations generalize to future unseen inputs.

3.6 Related work

Memory based meta-learning (in-context RNNs) Standard RNNs [Hochreiter
et all, 2001]; Duan et all, 2016, Wang et al), 2016] can implement a simple in-
context learning algorithm (see Bection 3.2). Unfortunately, the LA encoded in
the RNN parameters is largely over-parameterized, which leads to overfitting.
VSML demonstrates that weight sharing can address this issue resulting in more
general-purpose LAs.

Learned Learning Rules / Fast Weights NN that generate or change the weights
of another or the same NN are known as fast weight programmers [Schmidhuber,
19920], hypernetworks [Ha et all, 20T7], NNs with synaptic plasticity [Miconi
et al], 2018] or learned learning rules [Bengio et all, [T991] (see Section 3.7). In
VSML we do not require explicit architectures for weight updates, as weights are
emergent from RNN state updates. In addition to the learning rule, we implicitly
learn how the neural forward computation is defined. In succession to this work,
fast weights have also been used to meta-learn more general LAs [Sandler et al],
2021].

Learned gradient-based optimizers Meta-learning has been used to find optimiz-
ers that update the parameters of a model by taking the loss and gradient with
respect to these parameters as input [Ravi and Larochelle, 2017; Andrychowicz
et all, 2016; Li and Malik, 2017; Metz et al), 20204]. In this work, we are in-
terested in meta-learning that does not rely on fixed gradient calculation in the
inner loop.

Discrete program search An interesting alternative to distributed variable up-
dates in VSML is meta-learning via discrete program search [Schmidhuber,
1994K; Real et all, 2020]. In this paradigm, a separate programming language
needs to be defined that gives rise to neural computation when its instructions
are combined. This led to the automated rediscovery of backpropagation [Real

55 3.7 Discussion and limitations

et al], 2020]. In VSML, we demonstrate that a symbolic programming language
is not required, and general-purpose LAs can be discovered and encoded in
variable-shared RNNs. Search over neural network parameters is usually eas-
ier compared to symbolic program search due to smoothness in the loss land-
scape.

Multi-agent systems In the reinforcement learning setting, multiple agents can be
modeled with shared parameters [Sims, Karl, [1994; Pathak et al!, 20T9; Huang
et all, 2020], also in the context of meta-learning [Rosa et all, 2019a]. This is
related to the sharing of variables in VSML, depending on how the boundary be-
tween the agent and the environment is drawn. Unlike these works, we demon-
strate the advantage of variable sharing in meta-learning more general-purpose
LAs and present a weight update interpretation.

3.7 Discussion and limitations

The research community has perfected the art of leveraging backpropagation
for learning for a long time. At the same time, there are open questions such
as how to minimize memory requirements, learn effectively online and contin-
uously, learn sample efficiently, learn without separate backward phases, and
others. VSML suggests that instead of building on top of backpropagation as
a fixed routine, meta-learning offers an alternative to discover general-purpose
LAs. Nevertheless, this work is only a proof of concept—until now we have only
investigated small-scale problems and performance does not yet quite match the
mini-batched setting with large quantities of data. In particular, we observed
premature convergence of the solution at meta-test time which calls for further
investigations. Scaling our system to harder problems and larger meta-task dis-
tributions will be important future work.

The computational cost of the current VSML variant is also higher than that of
standard backpropagation. If we run a sub-RNN for each weight in a standard
NN with W weights, the cost is in O(W N?), where N is the state size of a sub-
RNN. If N is small enough and our experiments suggest that small N may be
feasible, this may be an acceptable cost. As N is not expected to grow with
the problem size (as opposed to W), this may be negligible for large problems.
Furthermore, VSML is not bound to the interpretation of a sub-RNN as a single
weight. Future work may relax this particular choice. The total complexity of an
iteration of meta-training with evolution strategies is O(NpTW N?) where Np is
the size of the population and T is the number of examples VSML is learning

56 3.8 Conclusion

from. It further requires space of O(W N + N?) to store all the forward activations
at the current time step W N and meta-parameters N2. For a gradient-based
meta-optimizer Np corresponds to the batch size, which is usually smaller. The
space requirements increase due to storing all forward activations across time
O(TW N + N?). Meta-testing has a runtime complexity of O(TW N?) and space
complexity of O(WN + N?).

Meta-optimization is also prone to local minima. In particular, when the number
of ticks between input and feedback increases (e.g. deeper architectures), credit
assignment becomes harder. Early experiments suggest that diverse meta-task
distributions can help mitigate these issues. Additionally, learning horizons are
limited when using backprop-based meta-optimization. Using ES allowed for
training across longer horizons and more stable optimization.

VSML can also be viewed as regularizing the NN weights that encode the LA
through a representational bottleneck. Itis conceivable that LA generalization as
obtained by VSML can also be achieved through other regularization techniques.
Unlike most regularizers, VSML also introduces substantial reuse of the same
learning principle and permutation invariance through variable sharing.

3.8 Conclusion

We introduced Variable Shared Meta Learning (VSML), a simple principle of
weight sharing and sparsity for meta-learning powerful learning algorithms (LAs).
Our implementation replaces the weights of a neural network with tiny LSTMs
that share parameters. We discuss connections to in-context learning, fast weight
generators (hyper networks), and learned learning rules.

Using learning algorithm cloning, VSML RNNss can learn to implement the back-
propagation algorithm and its parameter updates encoded implicitly in the recur-
rent dynamics. On MNIST it learns to predict well without any human-designed
explicit computational graph for gradient calculation.

VSML can meta-learn from scratch supervised LAs that do not explicitly rely
on gradient computation and that generalize to unseen datasets. Introspection
reveals that VSML LAs learn by fast association in a way that is qualitatively differ-
ent from stochastic gradient descent. This leads to gains in sample efficiency. Fu-
ture work will focus on reinforcement learning settings, improvements of meta-
learning, larger task distributions, and learning over longer horizons.

57 3.9 Follow-up work

3.9 Follow-up work

Since the publication of VSML, in-context learning in Transformers has become
hugely popular. In particular, research has demonstrated that Transformers can
implement increasingly general learning algorithms [Garg et all, 2022; Kirsch
et all, 2022b; Miller et all, 2022; Hollmann et all, 2022] such as gradient de-
scent [Von Oswald et all, 2023; Akyurek et al!, 2022]. Works in RL have shown
that learning algorithm cloning can also be used to distill and speed up exist-
ing RL algorithms into Transformers [Laskin et all, 2022]. Symmetries in neu-
ral networks modifying other neural networks have been further explored as
‘neural functionals’ [Navon et all, 2023; Zhou et al!, 2024; Herrmann et all,
2024].

58

3.9 Follow-up work

Chapter 4

SymLA: Introducing symmetries to
in-context reinforcement learning

Keywords in-context learning, reinforcement learning
Article Kirsch et al] [20224d] (preprint 2021)

In the next work, we extend VSML (Chapter 3) to the reinforcement learning
setting. We refer to such in-context reinforcement learning agents as symmetric
learning agents (SymLA).

4.1 Introduction

Meta reinforcement learning (RL) attempts to discover new RL algorithms au-
tomatically from environment interaction. In so-called in-context learning (or
black-box) approaches, the policy and the learning algorithm are jointly rep-
resented by a single neural network. These methods are very flexible, but they
tend to underperform compared to human-engineered RL algorithms in terms of
generalisation to new, unseen environments. In this work, we explore the role
of symmetries in meta-generalisation. We show that our previously introduced
meta-RL approach (Chapter 2) that meta-learns an objective for backpropagation-
based learning exhibits certain symmetries (specifically the reuse of the learning
rule, and invariance to input and output permutations) that are not present in
typical in-context meta-RL systems. We hypothesise that these symmetries can
play an important role in meta-generalisation. Building off VSML (Chapter 3),
we develop an in-context meta-RL system that exhibits these same symmetries.
We show through careful experimentation that incorporating these symmetries

59

60 4.1 Introduction

can lead to algorithms with a greater ability to generalise to unseen action &
observation spaces, tasks, and environments.

Recent work in meta reinforcement learning (RL) has begun to tackle the
challenging problem of automatically discovering general-purpose RL algo-
rithms [Kirsch et al., 2020b; Alet et al), 2020; Oh et al!, 2020]. These methods
learn to reinforcement learn by optimizing for earned reward over the lifetimes
of many agents in multiple environments. If the discovered learning principles
are sufficiently general-purpose, then the learned algorithms should generalise
to significantly different unseen environments. Depending on the structure of
the learned algorithm, these methods can be partitioned into backpropagation-
based methods, which learn to use the backpropagation algorithm to reinforce-
ment learn, and in-context learning (black-box-based) methods, in which a sin-
gle (typically recurrent) neural network jointly specifies the agent and RL algo-
rithm [Wang et al], 2016; Duan et al], 2016]. While backpropagation-based
methods are more prevalent due to their relative ease of implementation and
theoretical guarantees, in-context learning methods are expressive and have the
potential to avoid some of the issues with backpropagation-based optimization,
such as higher memory requirements, catastrophic forgetting, and differentiabil-
ity.

Unfortunately, in-context learning methods have not yet been successful at dis-
covering general-purpose RL algorithms that compete with the generality of
human-engineered algorithms. In this work, we show that in-context methods
exploit fewer symmetries than backpropagation-based methods. We hypothe-
sise that introducing more symmetries to in-context meta-learners can improve
their generalisation capabilities. We test this hypothesis by introducing a num-
ber of symmetries into an existing in-context meta-learning algorithm, including
(1) the use of the same learned learning rule across all nodes of the neural net-
work (NN), (2) the flexibility to work with any input, output, and architecture
sizes, and (3) invariance to permutations of the inputs and outputs (for dense
layers). Permutation invariance implies that for any permutation of inputs and
outputs the learning algorithm produces the same policy. As we show, this is
similar to dense NN trained with backpropagation that also exhibit permutation
invariance. We refer to such agents as symmetric learning agents (SymLA).

To introduce these symmetries, we build on variable shared meta-learning
(VSML [Chapter 3), which we adapt to the RL setting. VSML arranges multi-
ple RNNs like weights in a NN and performs message passing between these
RNNs. We then perform meta training and meta testing similar to in-context

61 4.2 Preliminaries

angle . LSTMs with state /5, Al LSTMs share the
- same parameters 6

Observations o,

H - " w Output logits y,
] \‘. Input sampled action a,_;
B D = gy |

Bidirectional

— .
q ni , forward msg, [3) 7, backward msg, oo, connections
2 dimensional 2 dimensional ’

Figure 4.1: The architecture for the proposed symmetric learning agents
(SymLA) that we use to investigate black-box learning algorithm with symme-
tries. Weights in a neural network are replaced with small parameter-shared
RNNs. Activations in the original network correspond to messages passed be-
tween RNNSs, both in the forward 71 and backward 12 direction in the network.
These messages may contain external information such as the environment ob-
servation, previously taken actions, and rewards from the environment.

learning RNNs (ICL RNNs), also known as RL? [Wang et al), 2016; Duan et al,
2016]. We experimentally validate SymLA on bandits, classic control, and grid
worlds, comparing generalisation capabilities to in-context RNNs. SymLA im-
proves generalisation when varying action dimensions, permuting observations
and actions, and significantly changing tasks and environments.

4.2 Preliminaries

4.2.1 Reinforcement Learning

The RL setting in this work follows the standard (PO)MDP formulation. At each
time step, t = 1,2, ... the agent receives a new observation o; € O generated
from the environment state s; € S and then takes an action a; € A sampled
from its (recurrent) policy a; ~ mg(+|01.4,a14-1). The agent receives a reward
r. € R C R and the next state via (s;11,7:) ~ e(-|s¢, a;). The initial environment
state s; is drawn from the initial state distribution s; ~ py,;i(+). The goal is to
find the optimal policy parameters * that maximise the expected return R =
E[Z;‘le v'r¢] where T is the episode length, and 0 < v < 1 is a discount factor
(T' = o0, v < 1 for non-episodic MDPs).

4.2.2 Meta Reinforcement Learning

The meta reinforcement learning setting is concerned with discovering novel
agents that learn throughout their multi-episode lifetime (L > T) by making

62 4.2 Preliminaries

use of rewards r; to update their behavior. This can be formulated as maximiz-
ing arg maxy Eep(e) [EaympromeSor, 7'74]] Where p(e) is a distribution of meta-
training environments. The objective itself is similar to a multi-task setting. In
this work, we discuss how the structure of the agent influences the degree to
which it learns and generalises in novel tasks and environments. We seek to
discover general-purpose learning algorithms that generalise outside the meta-
training distribution.

We can think of an agent that learns throughout its lifetime as a history-
dependent map a;, hy = f(hy_1,04,74-1,a,—1) that produces an action a; and
new agent state h; given its previous state h;_1, an observation o;, environment
reward 7;_;, and previous action a;,_;. In the case of backpropagation-based
learning, f is decomposed into: (1) a stationary policy Wés) that maps the cur-
rent state into an action, a; = wés)(ot); and (2) a backpropagation-based update
rule that optimizes a given objective J by propagating the error signal backwards
and updating the policy in fixed intervals (e.g. after each episode). In its simplest
form, for any dense layer k& € {1,..., K} of a NN policy with size A% x B®),
inputs), outputs z*t1) and weights w*) C @, the backpropagation update
rule is given by

xl()kJrl) _ Z :vff)wgi) (forward pass) (4.1)
51 = Z 5P ®) (backward pass) (4.2)
b
oJ
B = —a22 — sty ate) 43
o™
ab

where a € {1,..., A" b € {1,...,B®}, a is the learning rate, § are error
terms, and the agent state 4 corresponds to parameters #. The initial error is
given by the gradient at the NN outputs, 6 = %. Transformations such
as non-linearities are omitted here. Works in meta-reinforcement learning that
take this approach parameterise the objective .J, and meta-learn its parameters

[Kirsch et al], 2020b; Oh et al], 2020].

In contrast, in-context meta RL [Duan et all, 2016, Wang et al], 20T1€] meta-
learns f directly in the form of a single non-stationary policy 7y with memory.
Parameters of f represent the learning algorithm (no explicit J,) while the state
h represents the policy. In the simplest form of an RNN representation of f,
given a current hidden state 4 and inputs o, r, a (concatenated [-]), updates to

63 4.3 Symmetries in meta-RL

the policy take the form

Clb,hb — fH(h707 r, a)b = U(Z[h707 r, a]a”ab)? (44)

a

with parameters § = v and activation function o, omitting the bias term. We
refer to this as the in-context RNN or MetaRNN. The inputs must include, be-
yond the observation o, the previous reward r and action a, so that the meta-
learner can learn to associate past actions with rewards [Schmidhuber, [1993D;
Wang et all, 2016]. Further, black-box systems do not reset the state i between
episode boundaries, so that the learning algorithm can accumulate knowledge
throughout the agent’s lifetime.

4.3 Symmetries in meta-RL

In this section, we demonstrate how the learning dynamics in backpropagation-
based systems (Equation @.3)) differ from the learning dynamics in black-box sys-
tems (Equation f.4), and how this affects the generalisation of black-box methods
to novel environments.

4.3.1 Symmetries in backpropagation-based meta-RL

We first identify symmetries that backpropagation-based systems exhibit and dis-
cuss how they affect the generalisability of the learned learning algorithms.

1. Symmetric learning rule. In Equation §.3, each parameter w,; is updated
by the same update rule based on information from the forward and back-
ward pass. Meta-learning an objective .J,; affects the updates of each pa-
rameter symmetrically through backpropagation.

2. Flexible input, output, and architecture sizes. Because the same rule is
applied everywhere, the learning algorithm can be applied to arbitrarily
sized neural networks, including variations in input and output sizes. This
involves varying A and B and the number of layers, affecting how often
the learning rule is applied and how many parameters are being learned.

3. Invariance to input and output permutations. Given a permutation of
inputs and outputs in a layer, defined by the bijections p : N — N and

. . . k1 k) (k) s(k—1
¢ N — N, the learning rule is applied as :)3,(0,(’;)) = axé(i)wéb), 52(@) =

> 625(),))102];), and Aw? = —ozxsz()l)égg()b). Let w’ be a weight matrix with

64 4.3 Symmetries in meta-RL

k k . . k+1 k k
u)(;l;((a)i/)]/(b) = wé(i; the(r;)we can equwa(lke)ntly write x(p,(s;%)) (:k) Y x(p(l)w’p((a))p,(b),
— !/ /
Opia) = 2005y Woarprvy AN Aw i gy = —ax 000, 1If all elements

of w'™® are initialized i.i.d., we can interchangeably use w in place of w’
in the above updates. By doing so, we recover the original learning rule
equations for any a,b. Thus, the learning algorithm is invariant to input
and output permutations.

While backpropagation has inherent symmetries, these symmetries would be
violated if the objective function .J; would be asymmetric. Formally, when per-
muting the NN outputs y = x5+ such that y, = y,), J» should satisfy that
the gradient under the permutation is also a permutation

9Js(y') {Was(y)}
o(b)

(4.5)

ay, | oy

where the environment accepts the action permuted by ' in the case of J,(v').
This is the case for policy gradients, for instance, if the action selection 7 (als)
is permuted according to p’. When meta-learning objective functions, prior
work carefully designed the objective function J, to be symmetric. In Meta-
GenRL [Kirsch et all], 2020b], taken actions were processed element-wise with
the policy outputs and sum-reduced by the loss function. In LPG [Oh et al],
2020], taken actions and policy outputs were not directly fed to .J,, but instead
only the log probability of the action distribution was used.

4.3.2 Insufficient symmetries in black-box meta-RL

Black-box meta-learning methods are appealing as they require few hard-coded
biases and are flexible enough to represent a wide range of possible learning
algorithms. We hypothesize that this comes at the cost of the tendency to overfit
to the given meta training environment(s) resulting in overly specialized learning
algorithms.

Learning dynamics in backpropagation-based systems (Equation §£.3) differ signif-
icantly from learning dynamics in black-box systems (Equation @.4). In particular,
meta-learning Jy is significantly more constrained, since .J; can only indirectly
affect each policy parameter wg’;) through the same learning rule from Equation
A.3. In contrast, in black-box systems (Equation f.4)), each policy state h,, is di-
rectly controlled by unique meta-parameters (vector v.;), thereby encouraging
the black-box meta-learner to construct specific update rules for each element
of the policy state. This results in sensitivity to permutations in inputs and out-

65 4.4 Adding symmetries to black-box meta-RL

puts. Furthermore, input and output spaces must retain the same size as those
are directly dependent on the number of RNN parameters.

As an example, consider a meta-training distribution of two-armed bandits
where the expected payout of the first arm is much larger than the second.
If we meta-train an in-context RNN on these environments then when meta-
testing the in-context RNN will have learned to immediately increase the prob-
ability of pulling the first arm, independent of any observed rewards. If instead
the action probability is adapted using REINFORCE or a meta-learned symmet-
ric objective function then, due to the implicit symmetries, the learning algo-
rithm could not differentiate between the two arms to favor one over the other.
While the in-context RNN behavior is optimal when meta-testing on the same
meta-training distribution, it completely fails to generalise to other distributions.
Thus, the in-context RNN results in a non-learning, biased solution, whereas
the backpropagation-based approach results in a learning solution. In the for-
mer case, the learning algorithm is overfitted to only produce a fixed policy that
always samples the first arm. In the latter case, the learning algorithm is un-
biased and will learn a policy from observed rewards to sample the first arm.
Beyond bandits, for reasonably sized meta-training distributions, we may have
any number of biases in the data that an in-context RNN will inherit, impeding
generalisation to unseen tasks and environments.

4.4 Adding symmetries to black-box meta-RL

A solution to the illustrated over-fitting problem with black-box methods is the
introduction of symmetries into the parameterisation of the policy. This can be
achieved by generalising the forward pass (Equation §.T]), backward pass (Equa-
tion §.2), and element-wise update (Equation {.3) to parameterized versions.
We further subsume the loss computation into these parameterized update rules.
Together, they form a single recurrent policy with additional symmetries. Prior
work on variable shared meta-learning (VSML Chapter 3) [Kirsch and Schmidhu
ber, 2021]] used similar principles to meta-learn supervised learning algorithms.
In the following, we extend their approach to deal with the RL setting.

4.4.1 Variable Shared Meta Learning

We now recap VSML from [Chapter 3. VSML describes neural architectures for
meta-learning with parameter sharing. This can be motivated by meta-learning
how to update weights [Bengio et al., [1992; Schmidhuber, [1993a] where the up-

66 4.4 Adding symmetries to black-box meta-RL

date rule is shared across the network. Instead of designing a meta network that
defines the weight updates explicitly, we arrange small parameter-shared RNNs
(LSTMEs) like weights in a NN and perform message passing between those.

In VSML, each weight wy;, with w € R4*F in a NN is replaced by a small RNN
with parameters § and hidden state h,, € RY. We restrict ourselves to dense
NN layers here, where w corresponds to the weights of that layer with input
size A and output size B. This can be adapted to other architectures such as
CNNs if necessary. All these RNNs share the same parameters 6, defining both
what information propagates in the neural network, as well as how states are
updated to implement learning. Each RNN with state h,;, receives the analogue
to the previous activation, here called the vectorized forward message 77, € RM),
and the backward message 11, € RY for information flowing backwards in
the network (asynchronously). The backward message may contain information
relevant to credit assignment, but is not constrained to this. The RNN update
equation (compare Equation and §.4) is then given by

B faan (B W)) (4.6)

for layer k where k € {1,...,K}anda € {1,...,A®} bec {1,...,B®}. Sim-
ilarly, new forward messages are created by transforming the RNN states using
a function f5 : RY — RM (compare Equation f.1) such that

e =3 () (4.7)

defines the new forward message for layer k+ 1 withb € {1,..., B® = A*+D},

The backward message is given by fs : RY — RY (compare Equation @.2) such
that

D =3 fm (b)) (4.8)
b

and a € {1,..., A% = B*=D} For simplicity, we use 6 below to denote all of
the VSML parameters, including those of the RNN and forward and backward
message functions.

In the following, we derive a black-box meta reinforcement learner based on
VSML (visualized in Figure @.T]).

4.4.2 RL agent inputs and outputs

At each time step in the environment, the agent’s inputs consist of the previously
taken action a;_;, current observation o; and previous reward r;_;. We feed r;_;

67 4.4 Adding symmetries to black-box meta-RL

as an additional input to each RNN, the observation o; € RAY to the first layer
(HFP .= o,), and the action a,_; € {0,1}2" (one-hot encoded) to the last
layer (ﬁ,(lK) = a;_1). The index 1 refers to the first dimension of the]_/[> or M—
dimensional message. We interpret the agent’s output message y = m,(f“)
as the unnormalized logits of a categorical distribution over actions. While we
focus on discrete actions only in our present experiments, this can be adapted
for probabilistic or deterministic continuous control.

4.4.3 Architecture recurrence and reward signal

Instead of using multiple layers (KX > 1), in this work we use a single layer
(K =1). In Equation .6, RNNs in the same layer can not coordinate directly as
their messages are only passed to the next and previous layer. To give that single
layer sufficient expressivity, we make it ‘recurrent’ by processing the layer’s own
messages Fi,ﬂ“l) and Y. we empirically found that this architectural choice
enabled faster convergence during training compared to K > 1. The network
thus has two levels of recurrence: (1) Each RNN that corresponds to a weight
of a standard NN and (2) messages that are generated according to Equation §.7
and and fed back into the same layer. Furthermore, each RNN receives the
current reward signal r;_; as input. The update equation is given by

hY fan (B 0)) D D)y (4.9)

a
(. .

Vv Vv
environment inputs from previous step

wherea € {1,...,A®} be {1,...,B®}. As we only use a single layer, k = 1,
we apply the update multiple times (multiple micro ticks) for each step in the
environment. This can also be viewed as multiple layers with shared parameters,
where parameters correspond to states h. For pseudo code, see Algorithm [T4in
the appendix.

4.4.4 Symmetries in SymLA

By incorporating the above changes to inputs, outputs, and architecture, we
arrive at a black-box meta RL method with symmetries, here represented by our
proposed symmetric learning agents (SymLA). By construction, SymLA exhibits
the same symmetries as those described in Section §.3.7], despite not using the
backpropagation algorithm.

1. Symmetric learning rule. The learning rule as defined by Equation B.9
is replicated across a € {1,...,A} and b € {1,..., B} with the same
parameter 6.

68 4.4 Adding symmetries to black-box meta-RL

Ayl

Inner loop 9(1) 0(i) 9(!)
Updates RNN states /1,

Outer loop
Updates RNN parameters 0

Figure 4.2: A visualization of SymLA’s inner and outer loop. In SymLA, the
inner loop recurrently updates all RNN states h,;(t) for agentstepst € {1,..., L}
starting with randomly initialized states h,;. Based on feedback r;, RNN states
can be used as memory for learning. The learning algorithm encoded in the
RNN parameters 6 is updated in the outer loop by meta-training using ES.

2. Flexible input, output, and architecture sizes. Changes in A, B, and K
correspond to input, output, and architecture size. This does not affect
the number of meta-parameters and therefore these quantities can also be
varied at meta-test time.

3. Invariance to input and output permutations. When permuting mes-
sages using bijections p and p/, the state update becomes hgz) +—

fRNN(hgb ,m (21) H(k()b),rt 1,W(lf+1) ﬁ(’“_l)), and the message transfor-

mations are ﬁ kH =>. fm() and ﬁ (k= 1 = >, fwm(h alz)). Similar
to backpropagatlon when RNN states Pab are mltlallzed i.i.d., we can use
Rp(a),0) iN place of hy, to recover the original Equations §.7, B.8, #.9.

4.4.5 Learning/ Inner loop

Learning corresponds to updating RNN states h,, (see Figure @#.2). This is the
same as the in-context RNN [Wang et al], 2016; Duan et al!, 2016] but with
a more structured neural model. For fixed RNN parameters § which encode
the learning algorithm, we randomly initialize all states h,,. Next, the agent
steps through the environment, updating h,; in each step. If the environment
is episodic with T steps, the agent is run for a lifetime of L > T steps with
environment resets in-between, carrying the agent state h,;, over.

69 4.5 Experiments

4.4.6 Meta-Learning / Outer loop

Each outer loop step unrolls the inner loop for L environment steps to update
6. The SymLA objective is to maximize the agent’s lifetime sum of rewards, i.e.
Zle r¢(0). We optimize this objective using evolutionary strategies [Wierstra
et al], 2008; Salimans et all, 2017] by following the gradient

L
VoE g (616.5) Eenpe)Y_ 71 (S]] (4.10)
t=1
with some fixed diagonal covariance matrix ¥ and environments e ~ p(e). We
chose evolution strategies due to its ability to optimize over long inner-loop hori-
zons without memory constraints that occur due to backpropagation-based meta
optimization. Furthermore, it was shown that meta-loss landscapes are difficult
to navigate and the search distribution helps in smoothing those [Metz et al],
2019b]. The computational cost of meta-training and meta-testing in SymLA is
equivalent to the one described in VSML (Chapter 3).

4.5 Experiments

Equipped with a symmetric black-box learner, we now investigate how its learn-
ing properties differ from a standard in-context RNN. Firstly, we learn to learn
on bandits from Wang et all [20T6] where the meta-training environments are
similar to the meta-test environments. Secondly, we demonstrate generalisation
to unseen action spaces, applying the learned algorithm to bandits with varying
numbers of arms at meta-test time—something that in-context RNNs are not ca-
pable of. Thirdly, we demonstrate how symmetries improve generalisation to
unseen observation spaces by creating permutations of observations and actions
in classic control benchmarks. Fourthly, we show how permutation invariance
leads to generalisation to unseen tasks by learning about states and their associ-
ated rewards at meta-test time. Finally, we demonstrate how symmetries result
in better learning algorithms for unseen environments, generalising from a grid
world to CartPole. Hyper-parameters are in Appendix [C.2.

4.5.1 Learning to learn on similar environments

We first compare SymLA and the in-context RNN on the two-armed (dependent)
bandit experiments from Wang et al] [2016] where there is no large variation in
the meta-test environments. These consist of five different settings of varying dif-
ficulty that we use for meta-training and meta-testing (see Appendix [C.T)). There

70 4.5 Experiments

ICL RNN SymLA Difference SymLA, ICL RNN

Unif Indep. ' 1.9 1.7 0.83 1.3 [/ 0.72 1.2 0.03 -0.11 -0.1 0.04

2 Unif Dep. 1.2 0.59 0.9 X9 1.1 0.56 0.96 7 -0.08 -0.09 -0.04 0.06 -0.22
(]
_8 Easy 1.2 0.64 0.98 pwiel 1.3 0.51 0.8 -0.09 0.06 -0.13 -0.18
C
‘©
= Medium 1.3 0.63 0.96 7 1.3 0.51 0.87 | 2= 0.17 -0.02 -0.12 -0.1 -0.17
Hard 1.1 1.3 1.3 0.56 1.1 -0.79 -0.71 -0.23 -0.47
g g g
Qo Qo Qo
2 8 § 2 8 £ 2 8 §
= = > © P = = Py] P = = > © P
= [© (9] © = [t © [9) © [[© (9] ©
=) =) w = T =) =) w = T =) =) w = T
Test env Test env Test env

Figure 4.3: SymLA is competitive to in-context RNNs on bandit tasks. We
compare SymLA to a standard in-context RNN on a set of bandit benchmarks
from Wangetal][2016]. We train (y-axis) and test (x-axis) on two-armed bandits
of varying difficulties. We report expected cumulative regret across 3 meta-
training and 100 meta-testing runs with 100 arm-pulls (smaller is better). We
observe that SymLA tends to perform comparably to the in-context RNN.

are no observations (no context), only two arms, and a meta-training distribution
where each arm has the same marginal distribution of payouts. Thus, we expect
the symmetries from SymLA to have no significant effect on performance. We
meta-train for an agent lifetime of L = 100 arm-pulls and report the expected
cumulative regret at meta-test time in Figure f.3. We meta-train on each of the
five settings, and meta-test across all settings. The performance of the in-context
RNN reproduces the average performance of Wang et al] [2076], here trained
with ES instead of A2C. When using symmetries (as in SymLA), we recover a
similar performance compared to the in-context RNN.

4.5.2 Generalisation to unseen action spaces

In contrast to the in-context RNN, in SymLA we can vary the number of arms
at meta-test time. The architecture of SymLA allows to change the network size
arbitrarily by replicating existing RNNs, thus adding or removing arms at meta-
test time while retaining the same meta-parameters from meta-training. In Fig-
ure B4 we train on different numbers of arms and test on seen and unseen
configurations. All arms are independently drawn from the uniform distribution
pi ~ U[0, 1]. We observe that SymLA works well within-distribution (diagonal)

71 4.5 Experiments

Expected cumulative regret

2 arms 4.2 120 130 140
>
& 8arms 12 13 15 17
C
‘© 10 arms 14 13 15 17
l_
12 arms 20 15 16 17
[%)] ("] (")) ("]
£ £ £ £
® ® ® ©
[a\] [ee] o o
— —
Test env

Figure 4.4: SymLA generalizes to unseen numbers of arms by adding or re-
moving LSTMs at meta-test time. We meta-train and meta-test SymLA on vary-
ing numbers of independent arms to measure generalisation performance on
unseen configurations. We do this by adding or removing RNNs to accom-
modate the additional output units. The number of meta-parameters remains
constant. We report expected cumulative regret across 3 meta-training and 100
meta-testing runs with 100 arm-pulls (smaller is better). Particularly relevant are
the out-of-distribution scenarios (off-diagonal).

and generalises to unseen numbers of arms (off-diagonal). We also observe that
for two arms a more specialized solution can be discovered, impeding general-
isation when only training on this configuration.

4.5.3 Generalisation to unseen observation spaces

In the next experiments we want to specifically analyze the permutation invari-
ance created by our architecture. In the previous bandit environments, actions
occurred in all permutations in the training distribution. In contrast, RL envi-
ronments usually have some structure to their observations and actions. For
example in CartPole the first observation is usually the pole angle and the first
action describes moving to the left. Human-engineered learning algorithms are
usually invariant to permutations and thus generalise to new problems with dif-
ferent structure. The same should apply for our black-box agent with symme-
tries.

We demonstrate this property in the classic control tasks CartPole, Acrobot, and
MountainCar. We meta-train on each environment respectively with the orig-
inal observation and action order. We then meta-test on either (1) the same
configuration or (2) across a permuted version. The results are visualized in

72 4.5 Experiments

Meta Testing on CartPole Meta Testing on Acrobot Meta Testing on MountainCar
-E 0 ~x, 7 type = 6 type /
g -5 Ty 6 —— ICLRNN s 5 — ICLRNN P
¢ -10 b 5 SymLA 4 SymLA Ve
° type & 2 shuffled shuffled L
>-15 — icLrw % —e— False & 3 — False "
© —20 SymLA [3 e True ~ 5 % True 4
S 75 shuffled & 2 7 2o
IS —e— False x 1 ~ 4 1 p —
3730 -+ Tre 0 e s RN e 0 A x

0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500

Inner Step Inner Step Inner Step
Figure 4.5: SymLA’s architecture is inherently permutation invariant. When
meta-training on standard CartPole, Acrobot, and MountainCar, the perfor-
mance of the in-context RNN and SymLA are comparable. We then meta-test
with shuffled observations and actions. In this setting, SymLA still performs well
as it has meta-learned to identify observations and actions at meta-test time. In
contrast, the in-context RNN fails to do so. Standard deviations are over 3 meta-
training and 100 meta-testing runs.

Figure B.5. Due to the built-in symmetries, the performance does not degrade
in the shuffled setting. Instead, our method quickly learns about the ordering
of the relevant observations and actions at meta-test time. In comparison, the
in-context RNN baseline fails on the permuted setting where it was not trained
on, indicating over-specialization. Thus, symmetries help to generalise to obser-
vation permutations that were not encountered during meta training.

4.5.4 Generalisation to unseen tasks

The permutation invariance has further reaching consequences. It extends to
learning about tasks at meta-test time. This enables generalisation to unseen
tasks. We construct a grid world environment (see Figure B.6) with two object
types: A trap and a heart. The agent and the two objects (one of each type) are
randomly positioned every episode. Collecting the heart gives a reward of +1,
whereas the trap gives -1. All other rewards are zero. The agent observes its
own position and the position of both objects. The observation is constructed
as an image with binary channels for the position and each object type.

When meta-training on this environment, at meta-test time we observe in Fig-
ure [.§ that the in-context RNN learns to directly collect hearts in each episode
throughout its lifetime. This is due to having overfitted to the association of
hearts with positive rewards. In comparison, SymLA starts with near-zero re-
wards and learns through interactions which actions need to be taken when
receiving particular observations to collect the heart instead of the trap. With suf-

73 4.5 Experiments

Meta Testing on GridWorld Meta Testing on GridWorld
with Swapped Rewards

\.- r=-1

Player —— ICLRNN

SymLA
---- Random Policy

Smoothed reward
o

100 Z(i(r)lner?;?eop 400 500 100 ZOISner?;?eOp 400 500
Figure 4.6: We extend the permutation invariant property to concepts - varying
the rewards associated with different object types (+ 1 and -1) in a grid world
environment (left). SymLA is forced to learn about the rewards of object types
at meta-test time (starting at near zero reward and increasing the reward intake
over time). When switching the rewards and running the same learner, the in-
context RNN collects the wrong rewards, whereas SymLA still infers the correct
relationships. Standard deviations are over 3 meta-training and 100 meta-testing
runs.

ficient environment interactions L we would expect SymLA, if it implemented a
general-purpose RL algorithm, to eventually (after sufficient learning) match the
average reward per time of the in-context RNN in the non-shuffled grid world.
Next, we swap the rewards of the trap and heart, i.e. the trap now gives a
positive reward, whereas the heart gives a negative reward. This is equivalent
to swapping the input channels corresponding to the heart and trap. We ob-
serve that SymLA still generalises, learning at meta-test time about observations
and their associated rewards. In contrast, the in-context RNN now collects the
wrong item, receiving negative rewards. These results show that black-box meta
RL with symmetries discovers a more general update rule that is less specific to
the training tasks than typical in-context RNNs.

4.5.5 Generalisation to unseen environments

We have demonstrated how permutation invariance can lead to increased gen-
eralisation. But can SymLA also generalise between entirely different envi-
ronments? We show-case how meta-training on a grid world environment al-
lows generalisation to CartPole. To simplify credit-assignment, we use a dense-
reward grid world where the reward is proportional to the change in distance
toward a target position. Both the target position, as well as the agent position
are randomized. The agent observes its own position, all obstacles, and the
target position as a binary image with multiple channels. In the CartPole envi-
ronment the agent is rewarded for being as upright and centered as possible [[Tun;

74 4.6 Related work

Meta Testing on GridWorld Meta Testing on CartPole
(within distribution) (out of distribution)

0.4 0.15

0.3 0.10
WW
0.2 S o 0.05 —— SymLA
ICL RNN
0.1 0.00 iy —

TT \ Random Policy
0.0 VWA W M Sy

—0.05

Reward difference
to random policy
_c|>
=

-0.10
0 100 200 300 400 500 0 100 200 300 400 500
Inner Step Inner Step

Figure 4.7: Generalisation capabilities of SymLA from GridWorld to CartPole.
We meta-train the learning algorithm on GridWorld. We then meta-test on Grid-
World and CartPole and report standard error of the mean and mean rewards
(100 seeds) relative to a random policy - this highlights the learning process.
While SymLA generalises from GridWorld to CartPole, the in-context RNN does
not.

yasuvunakool et al], 2020]. Further, during meta-training, we randomly project
observations linearly for each lifetime. This is necessary as in the grid world
environment all observations are binary whereas the CartPole environment has
continuously varying observations. This mismatch would inhibit generalisation.
In Figure B.7] we demonstrate that meta-training with SymLA only on the Grid-
World environment allows reusing the same meta-learned learning algorithm
to the CartPole environment. In contrast, the in-context RNN does not exhibit
such generalisation. This suggests that meta-learning with symmetries has the
potential to produce learning algorithms that generalize between significantly
different environments.

4.6 Related work

Black-Box Meta RL Black-box meta RL can be implemented by policies that
receive the reward signal as input [Schmidhuber, T993b] and use memory to
learn, such as recurrence in RNNs [Hochreiter et al], 2001; Wang et all, 2076
Duan et all, 2016]. These approaches do not feature the symmetries discussed
in this work which leads to a tendency of overfitting.

Learned Learning Rules & Fast Weights In the supervised and reinforce-
ment learning contexts, learned learning rules [Bengio et all], 1992] or fast
weights [Schmidhuber, 1992, [1993a; Miconi et all, 2018; Schlag et al], 2021b;

75 4.7 Conclusion

Najarro and Risi, 2020] describe (meta-)learned mechanisms (slow weights)
that update fast weights to implement learning. This often involves outer-
products and can be generalised to black-box meta-learning with parameter shar-
ing [Kirsch and Schmidhuber, 2021]]. None of these approaches feature all of
the symmetries we discuss above to meta learn RL algorithms.

Backpropagation-based Meta RL Alternatives to black-box meta RL include
learning a weight initialization and adapting it with a human-engineered RL
algorithm [Finn et all, 2017], warping computed gradients [Flennerhag et all,
2020], meta-learning hyper-parameters [Sutton|, [1992; Xu et all, 2018] or meta-
learning objective functions corresponding to the learning algorithm [Houthooft
et al!, 2018; Kirsch et all, 20200; Xu et al], 2020; Oh et al], 2020; Bechtle et al,
2021].

Neural Network Symmetries Symmetries in neural networks have mainly been
investigated to reflect the structure of the input data. This includes applica-
tions of convolutions [Fukushima, 1979], deep sets [Zaheer et al), 2017], graph
neural networks [Wu et al), 2020], geometric deep learning [Bronstein et all,
2017], or meta-learning symmetries [Zhou et all, 202T]. In contrast, our work
focuses on the structure and symmetries of learning algorithms. While many
meta-learning algorithms exhibit symmetries [Bengio et al], T992], in particular
backpropagation-based meta-learning [Andrychowicz et all, 2016; Finn et al,,
2017; Flennerhag et all, 2020; Kirsch et al], 20200], the effects of these sym-
metries have not been discussed in detail. In this work, we provide such a
discussion and experimental investigation in the context of meta-RL.

4.7 Conclusion

In this work, we identified symmetries that exist in backpropagation-based meth-
ods for meta RL but are missing from black-box methods. We hypothesized
that these symmetries lead to better generalisation of the resulting learning algo-
rithms. To test this, we extended a black-box meta-learning method [Kirsch and
Schmidhuber, 2021]] that exhibits these same symmetries to the meta RL setting.
This resulted in SymLA, a flexible black-box meta RL algorithm that is less prone
to over-fitting compared to in-context RNNs. We demonstrated generalisation
to varying numbers of arms in bandit experiments (unseen action spaces), per-
muted observations and actions with no degradation in performance (unseen
observation spaces), and observed the tendency of the meta-learned RL algo-

76 4.8 Follow-up work

rithm to learn about states and their associated rewards at meta-test time (unseen
tasks). Finally, we showed that the discovered learning behavior also transfers
between grid world and (unseen) classic control environments to some extent.
This generalization is still quite limited and warrants future investigation with
larger meta-training distributions and neural networks of higher capacity.

4.8 Follow-up work

Generalisation in in-context meta-RL has gained significant more interest since
the publication of SymLA. For instance, [Tang and Ha [2021] established a
relationship of VSML and SymLA-like systems to the attention mechanism in
Transformers and demonstrating the benefits of permutation invariance in Re-
inforcement Learning. Other works scaled up the environment distributions to
increase generalization in meta-RL [Lu et al), 2023; Team et all, 2023; Raparthy
et all, 2024], a topic we will further discuss in the next [Chapter 5 and [Chap]

ter 6.

Chapter 5

GPICL: How and when
general-purpose in-context learning
emerges in transformers

Keywords in-context learning, transformers, fast weight programmers, emergence, algo-
rithmic transitions
Article Kirsch et al] [2022H]

In the previous two works (Chapter 3 &), we have shown that LSTMs can learn
in-context both in supervised and reinforcement learning. The generalization
capabilities were aided by parameter-sharing between multiple LSTM instantia-
tions. Can other neural architectures, such as Transformers, also be trained to
perform generalizable in-context learning? In this chapter, we show that with
the right data distribution and training regime, Transformers and other black-box
models can be meta-trained to act as general-purpose in-context learners.

5.1 Introduction

Modern machine learning requires system designers to specify aspects of the
learning pipeline, such as losses, architectures, and optimizers. Meta-learning
is the process of automatically discovering new learning algorithms instead of
designing them manually [Schmidhuber, 1987]. An important quality of human-
engineered learning algorithms, such as backpropagation and gradient descent,
is their applicability to a wide range of tasks or environments. For learning-to-
learn to exceed those capabilities, the meta-learned learning algorithms must be

77

78 5.1 Introduction

similarily general-purpose. Recently, there has been significant progress toward
this goal [Kirsch et al], 20200; Oh et all, 2020]. The improved generality of
the discovered learning algorithms has been achieved by introducing inductive
bias, such as by bottlenecking the architecture or by hiding information, which
encourage learning over memorization. Methods include restricting learning
rules to use gradients [Metz et all, 2019Db; Kirsch et al], 2020k; Oh et al], 2020],
symbolic graphs [Real et al], 2020; Co-Reyes et all, 2021], or parameter shar-
ing [Kirsch and Schmidhuber, 2021}; Kirsch et al), 20224d].

While enabling generalization, these inductive biases come at the cost of in-
creasing the effort to design these systems and potentially restrict the space of
discoverable learning algorithms. Instead, we seek to explore general-purpose
meta-learning systems with minimal inductive bias. Good candidates for this are
black-box sequence-models as meta-learners such as LSTMs [Hochreiter et al],
2001; Wang et al!, 2016; Duan et all, 2016] or (linear) Transformers [Schmidhu-
ber, 1992b; Vaswani et al), 2017]. These memory-based or in-context learners
take in training data and produce test-set predictions without any explicit def-
inition of an inference model, training loss, or optimization algorithm. With
recent advances of in-context learning in large language models [Brown et al],
2020], neural networks can already learn many concepts from demonstrations.
What are the necessary conditions such that those models can learn from a wide
range of demonstrations? To what extent can we elicit in-context learning that
generalizes to a wider range of problems, in a similar way how learning via
backpropagation and gradient descent can generalize?

In this work, we investigate how such in-context meta-learners can be trained
to (meta-)generalize and learn on significantly different datasets than used dur-
ing meta-training. For this we propose a Transformer-based General-Purpose
In-Context Learner (GPICL) which is described with an associated meta-training
task distribution in Bection 5.3. In Bection 5.4.17 we characterize algorithmic
transitions—induced by scaling the number of tasks or the model size used for
meta-training—between memorization, task identification, and general learning-
to-learn. We further show in that the capabilities of meta-trained
algorithms are bottlenecked by their accessible state size (memory) determining
the next prediction (such as the hidden state size in a recurrent network), un-
like standard models which are thought to be bottlenecked by parameter count.
Finally, in Section 5.4.3, we propose practical interventions that improve the
meta-training of general purpose learning algorithms. Additional related work

can be found in Section 5.5.

79 5.2 Background

5.2 Background

What is a (supervised) learning algorithm? In this work, we focus on the set-
ting of meta-learning supervised in-context learning algorithms. Consider a map-
ping

({zi,9i}i5,2) = o/ (5.1)
from the training (support) set D = {z;, yi}f\g and a query input 2’ to the query’s
prediction v’ where z;, 2’ € R+, y;,4/ € RN and Np, N,,, N, € N*. The subset
of these functions that qualify as learning algorithms are those that improve their
predictions 1/ given an increasingly larger training set D. Meta-learning then
corresponds to finding these functions via meta-optimization. As in other black-
box meta-learning models, we use a neural network to represent such functions.
Such in-context learning is different from inner gradient-based meta-learning
(such as MAML [Finn et all, 2077]) in that no explicit gradients are computed at
meta-test time. All required mechanisms for learning are implicitly encoded in
the black-box neural network.

What is a general-purpqse learn- 0 e &
ing algorithm? A learning algo- & P R &

. . > 29 . Lo Q' &
rithm can be considered general- ~* © Algorithm Description < N

. . . A A
purpose if it learns on a wide X x Task memorization

range of possible tasks D and their . —
respective related queries 2’ y'. In ~ , Task identification /

this work, we are interested in >
strong generalization across en- x v Zeroshot generalization
tirely different datasets such as

MNIST, Fashion MNIST, and Cl- v v oereretbubese
FAR10. Human-engineered learn-
ing algorithms such as gradient-
descent on a suitable loss func
tion can be considered general-
purpose learning algorithms that
can be applied to any of these
datasets (where the gradient is obtained via backpropagation or other means).
Meta-learners often don’t generalize that well at meta-test time when we have
an entirely new dataset that we want to learn on. We set out to investigate
under which conditions in-context learning generalizes well. In comparison to
in-context learning, gradient-based methods like MAML hard-code the human-

>
>

>

A

2

Examples seen

Performance
v
v

Table 5.1: An algorithm encoded in a neu-
ral network can be classified along two dif-
ferent dimensions: To what extent it learns
and to what extent it generalizes.

80 5.3 General-Purpose In-Context Learning

engineered learning algorithm of gradient descent and inherit its generalization
properties.

5.3 General-Purpose In-Context Learning

Due to the small number of inductive biases in black-box models, we can only
expect (meta-)generalization when meta-training with an appropriately broad
data distribution. Thus, changes in the data distribution affect whether and how
a model meta-learns and meta-generalizes. We classify algorithms along two
different dimensions: To what extent it learns (improving predictions given in-
creasingly larger training sets provided at inference time), and to what extent
it generalizes (performs well on instances, tasks, or datasets not seen before).
Algorithms can then be categorized as in [Table 5.1]. In task memorization, the
model immediately performs well on seen tasks but does not generalize. In task
identification, the model identifies the task and gets better on it at inference time
as it sees more examples but can only do so on tasks very similar to what it was
trained on. In zero-shot generalization, the model immediately generalizes to
unseen tasks, without observing examples. Finally, a general-purpose learning
algorithm improves as it observes more examples both on seen and significantly
different unseen tasks. We demonstrate algorithmic transitions occurring be-
tween these learning modalities, and empirically investigate these.

5.3.1 Generating tasks for learning-to-learn

Neural networks are known to require datasets of significant size to effectively
generalize. While in standard supervised learning large quantities of data are
common, meta-learning algorithms may require a similar number of distinct
tasks in order to learn and generalize. Unfortunately, the number of commonly
available tasks is orders of magnitudes smaller compared to the datapoints in
each task.

Previous work has side-stepped this issue with architectural or algorithmic struc-
ture built into the learning algorithm, in effect drastically reducing the number
of tasks required. For example, in Kirsch and Schmidhuber [2021]]; Kirsch et al
[20224d], the authors included symmetries into the black-box model in the form
of input and output permutation invariances. An alternative to this is the gener-
ation of new tasks [Schmidhuber, 2013; Clung, 2019; Such et al!, 2020; Parker-
Holder et all, 20224]. Unfortunately, it is not easy to generate a wide range of
tasks that are both diverse and contain structure as found in the real world.

81 5.3 General-Purpose In-Context Learning

Algorithm 9 Meta-Training for General-Purpose In-Context Learning (GPICL) via
Augmentation
Require: Dataset D = {Z;,7;}, Number of tasks K € N*
Define p(D) by augmenting D, here by:
{Agf)}le ~N(0, 5) > Sample input projections
{p"Y K~ p(p) > Sample output permutations
D® = {A®z,)0 (5,)}
p(D) := Uniform[{ D®}K_]

Meta-Training on p(D)
while not converged do

66— aV,J(0) > Equation 5.2
In this work, we take an inter-
mediate step by augmenting exist-

ing datasets, in effect increasing General-Purpose In-Context Learning Transformer
the breadth of the task distribution
based on existing task regularities.
We generate a large number of
tasks by taking existing supervised
learning datasets, randomly pro-
jecting their inputs and permut-
ing their classes (e.g. all inputs of
class 3 are now class 1 and vice
versa). While the random pro-
jection removes spatial structure
from the inputs, this structure is not believed to be central to the task (for in-
stance, the performance of SGD-trained fully connected networks is invariant
to projection by a random orthogonal matrix [Wadia et al], 2021], see [Chap]
fer 4). Task augmentation allows us to investigate fundamental questions about
learning-to-learn in the regime of many tasks without relying on huge amounts
of existing tasks or elaborate schemes to generate those.

Third support set

Figure 5.1: Our General-Purpose In-
Context Learner (GPICL) is based on the
vanilla Transformer which is trained to make
predictions for queries =’ given any prefix of

adataset D := {z;,;}3 as in Equation 5.2

Third query set

A task or dataset D is then defined by its corresponding base dataset D = {z;, 7; },
(linear) projection A € RN=>*Ne with A;; ~ N (O, N%), and output permutation
p, D = {Az;, p(y;)}. Unless noted otherwise, the distribution over output per-
mutations p(p) is uniform.

82 5.4 Experiments on the emergence of general learning-to-learn

5.3.2 Meta-learning and meta-testing

Meta-learning Given those generated tasks, we then meta-train jointly on a
mini-batch sampled from the whole distribution. First, we sample datasets D
from the augmented task distribution p(D) and then take a random batch Dy,
from the training set. Second, we minimize J(0), the sum of losses on the query
prediction after observing any prefix Dy.;_;

Np

J(8) = Epepo) | Y U fo(Drjo1,25),97) | (5.2)

j=1

where in the classification setting, [is the cross entropy loss between the label
y; and prediction y' = fy(D1.;_1,%;), fo is a neural network mapping to predic-
tions ¢’ as in Equation 5.7. During meta-training, we take gradient steps in .J(#)
by backpropagation and Adam [Kingma and Bd, 2014]. To investigate the effect
of the data distribution, we train on various numbers of tasks (Algorithm 9). Fi-
nally, we need to choose a black-box model for the function f,. We use a vanilla
Transformer [Vaswani et all, 2017] with learned positional embeddings, visual-
ized in [Figure 5.1. We call it the General-Purpose In-Context Learner (GPICL).
Each token corresponds to the concatenation of a transformed input z; and one-
hot encoded label y;_;. The model predicts the corresponding logits v/ = v;
for the current input ' = z;. When querying for the first 21, no label for the
previous input is available, so we feed a zero vector.

Meta-testing At meta-test time, no gradient-based learning is used. Instead, we
simply obtain a prediction 3’ by evaluating the neural network f, on a dataset D
and query point z’. The dataset D is either derived from the same base dataset
(eg MNIST after meta-training on MNIST) or it is derived from a different dataset
(eg Fashion MNIST or CIFAR10). In both cases a seen or unseen random projec-
tion is used. Datapoints are taken only from the respective test split of the base
dataset.

5.4 Experiments on the emergence of general
learning-to-learn
Multi-task training with standard classifiers Given a task distribution of many

different classification tasks, we first ask under what conditions we expect
“learning-to-learn” to emerge. We train a single model across many tasks where

83 5.4 Experiments on the emergence of general learning-to-learn

each task corresponds to a random transformation of the MNIST dataset, but
where the MLP only receives a single datapoint instead of a whole sequence as
input. This corresponds to Np = 1 in Equation 5.2. We would expect such
a non-sequential classifier to be able to correctly predict for more tasks as its
number of parameters increases. When plotting the network capacity against
the number of tasks, we indeed observe a linear boundary where an increasing
number of tasks can be fit the larger the network (Figure 5.2a). This is consistent
with results in Collins et al] [2016], which found that a constant number of bits
about the data distribution can be stored per model parameter, across a variety
of model architectures and scales.

Transformer

(a) MLP: Accuracy on seen tasks (b) Accuracy on seen tasks (C)Accuracy on unseen tasks
224 1.0 228 -1.0
222 222
220 0.8 220 -0.8
v 218 18
) v 2
0 216 é 216
% 214 0.6 2 ou 0.6
L 212 ° o1
2 510 g 2
E 2 N 0.4 g 10 0.4
3 2 E 2
Z 26 02 2 %
4 .
2 24 0.2
22
20 2
......... 0.0 20
NS 0 © N ® © N i i i l | i i l 0.0
- Mm o N 1 4 N S 0 © N ¥ ®© © N NS 0 OV N Y OV N
- N 0 2 — m o o~ n — — m o o~ n —
.)) - N 0 ~ N 1
Hidden size (capacity) Transformer model size Transformer model size

Figure 5.2: GPICL is able to generalize to unseen tasks. Each cell is a separate
meta-training run. (a) An MLP classifier trained in a multi-task fashion across
various numbers of tasks (generated based on MNIST) and network sizes is able
to fit linearly more tasks, the larger its capacity. (b) A sequence model (here the
GPICL Transformer) that observes a dataset D of inputs and labels transitions
into generalizing to an seemingly unbounded number of tasks with an increase
in model size. This is achieved by switching from a memorization solution to a
learning solution that (c) generalizes to unseen tasks. This generalization does
not occur with the MLP.

Learning-to-learn with large sequential models and data In contrast to the
MLP classifier, a sequence model that observes multiple observations and their
labels from the same task, could exceed that linear performance improvement by
learning at inference time. Indeed, we observe that when switching to a Trans-
former that can observe a sequence of datapoints before making a prediction
about the query, more tasks can be simultaneously fit (Figure 5.2b). At a certain
model size and number of tasks, the model undergoes a transition, allowing to
generalize to a seemingly unbounded number of tasks. We hypothesize that
this is due to switching the prediction strategy from memorization to learning-to-

84 5.4 Experiments on the emergence of general learning-to-learn

Meta-test learning curve on MNIST Meta-test learning curve on FashionMNIST

1 (@) (b)

o
©
L

o
o
L

Binn 2
AAFORR AR
'/JA'V‘/V‘ v
Y

Accuracy

P4 Trained on
o —— mnist

] / fashion_mnist

0 20 40 60 80 100 0 20 40 60 80 100
Number of examples seen Number of examples seen

o
IS
L

o
N

0.0

Figure 5.3: GPICL learns from examples at test time, and generalizes to unseen
tasks and datasets. We meta-trained the Transformer on a set of tasks defined
by random transformations of either MNIST (blue) or FashionMNIST (orange).
We then meta-test on unseen tasks, and seen (ab) or unseen (ba) datasets. The
plot shows the accuracy averaged across multiple runs at each inner step, with
shading indicating 95% confidence intervals. The increase in performance at
each step suggests we have learned a learning algorithm.

learn. Further, when (meta-)testing the same trained models from the previous
experiment on an unseen task (new random transformation of MNIST), they gen-
eralize only in the regime of large numbers of tasks and model size (Figure 5.2c).
As an in-context learner, meta-testing does not involve any gradient updates but
only running the model in forward mode.

Insight 1: It is possible to learn-to-learn with black-box models Effective learn-
ing algorithms can be realized in-context using black-box models with few in-
ductive biases, given sufficient meta-training task diversity and large enough
model sizes. To transition to the learning-to-learn regime, we needed at least
213 = 8192 tasks.

In the following, we study learning-to-learn from the perspective of the data
distribution, the architecture, and the optimization dynamics. For the data dis-
tribution, we look at how the data diversity affects the emergence and transitions
of learning-to-learn, generalization, and memorization. For architecture, we an-
alyze the role of the model and state size in various architectures. Finally, we
observe challenges in meta-optimization and demonstrate how memorization
followed by generalization is an important mechanism that can be facilitated by
biasing the data distribution.

85 5.4 Experiments on the emergence of general learning-to-learn

5.4.1 Large data: Generalization and algorithmic transi-
tions

Simple data augmentations lead to the emergence of learning-to-learn To ver-
ify whether the observed generalizing solutions actually implement learning al-
gorithms (as opposed to e.g. zero-shot generalization), we analyze the meta-test
time behavior. We plot the accuracy for a given query point for varying numbers
of examples in Figure 5.3. As is typical for learning algorithms, the performance
improves when given more examples (inputs and labels).

Generalization Naturally, the question arises as to what extent these learn-
ing algorithms are general. While we have seen generalization to unseen tasks
consisting of novel projections of the same dataset, do the learned algorithms
also generalize to unseen datasets? In we observe strong out-of-
distribution performance on Fashion MNIST after having trained on MNIST (b,
blue), and there is no generalization gap compared to directly training on Fash-
ion MNIST (b, orange). Similarly, when meta training on Fashion MNIST and
meta testing on MNIST (a, orange) we observe that the learning algorithm gen-
eralizes, albeit with a larger generalization gap.

Comparison to other methods Other datasets and baselines are shown in [Ta]
ble 5.7. We aim to validate whether methods with less inductive bias (such
as our GPICL), can compete with methods that include more biases suitable to
learning-to-learn. This includes stochastic gradient descent (SGD), updating the
parameters online after observing each datapoint. MAML [Finn et al], 2077]
proceeds like SGD, but uses a meta-learned neural network initialization. Both
methods that rely on backpropagation and gradient descent learn more slowly
than our Transformer. In the case of MAML, this may be due to the main mecha-
nism being feature reuse [Raghu et all, 2020] which is less useful when training
across our wider task distribution. For in-context learners (methods that do not
hard-code gradient descent at meta-test time), we test VSML [Kirsch and Schmid-
huber, 2021] that discovered learning algorithms significantly generalizing be-
tween tasks. Our GPICL comes surprisingly close to VSML without requiring
the associated inductive bias. GPICL generalizes to many datasets, even those
that consist of random input-label pairs. We also observe that learning CIFAR10
and SVHN from only 99 examples with a general-purpose learning algorithm is
difficult, which we address in fection 5.4.4. Training and testing with longer con-
text lengths improves the final predictions (Appendix [D.2). Using LSTM-based
in-context learners performs worse, which we further discuss in

86 5.4 Experiments on the emergence of general learning-to-learn

Table 5.2: Meta-test generalization to various (unseen) datasets after meta-
training on augmented MNIST and seeing 99 examples, predicting the 100th.
We report the mean across 3 meta-training seeds, 16 sequences from each task,
16 tasks sampled from each base dataset. GPICL is competitive to other ap-
proaches that require more inductive bias.

Method Inductive bias MNIST Ejﬂ]'SOT” KMNIST ~Random CIFAR10 SVHN

SGD Backprop, SGD 70.31% 50.78% 37.89% 100.00% 14.84% 10.16%
MAML Backprop, SGD 53.71% 48.44% 36.33% 99.80% 17.38% 11.33%
VSML In-context, param sharing 79.04% 68.49% 54.69% 100.00% 24.09% 17.45%
LST™M In-context, black-box 25.39% 28.12% 18.10% 58.72% 12.11% 11.07%
GPICL (ours) In-context, black-box 73.70% 62.24% 53.39% 100.00% 19.40% 14.58%

among other alternative architectures.

Insight 2: Simple data augmentations are effective for learning-to-learn The
generality of the discovered learning algorithm can be controlled via the data
distribution. Even when large task distributions are not (yet) naturally available,
simple augmentations are effective.

Task Task General
memorization identification | learning to learn
Transitioning from memorization to 7] — seenmnisT |
0.6 Unseen MNIST T /\A
" | — Unseen FashionMNIST L w

task identification to general learn-
ing-to-learn When do the learned
models correspond to memorizing,
learning, and generalizing solutions?
In Figure 5.4, we meta-train across
varying numbers of tasks, with each
point on the x-axis corresponding to I S (R TR Y
multiple separate meta-training runs. remberertesse

tween the last and first prediction different phases in terms of meta-

(how much is learned at meta-test learned behavior. (1) When training on
time) for a seen task, an unseen @ small number of tasks, tasks are mem-
task, and an unseen task with a dif- ©orized. (2) Tasks from the training distri-
ferent base dataset. We observe bution are identified, which is evident
three phases: In the first phase, the asa within-sequence increase of perfor-
model memorizes all tasks, resulting Mance. (3) When training across many
in no within-sequence performance tasks, we discover a learning algorithm

improvement. In the second phase, it that generalizes to unseen tasks and un-
seen datasets.

0.5 4 —— Unseen KMNIST
0.41

0.3

Accuracy improvement within sequence

87 5.4 Experiments on the emergence of general learning-to-learn

memorizes and learns to identify tasks, resulting in a within-sequence improve-
ment confined to seen task instances. In the final and third phase, we observe
a more general learning-to-learn, a performance improvement for unseen tasks,
even different base datasets (here FashionMNIST). This phenomenon applies to
various other meta-training and meta-testing datasets. The corresponding exper-
iments can be found in Appendix D.6. In Appendix D.3 we also investigate the
behavior of the last transition.

Insight 3: The meta-learned behavior has algorithmic transitions When in-
creasing the number of tasks, the meta-learned behavior transitions from task
memorization, to task identification, to general learning-to-learn.

5.4.2 Architecture: Large memory (state) is crucial for learn-
ing

In the previous experiments we ob-

served that given sufficient task diver- 1o7e

Transformer
® Outer-product LSTM

sity and model size, Transformers can ~ os{:
learn general-purpose learning algo-
rithms. This raises the question how
essential the Transformer architecture 2| .
is and whether other black-box mod- e/ ool
els could be used. We hypothesize
that for learning-to-learn the size of

Unseen MNIST

(b)

Unseen MNIST
M

(a) 1.09

VSML without symmetries

Accuracy

Figure 5.5: The state size (accessi-

the memory at meta-test time (or state
more generally) is particularly impor-
tant in order to be able to store learn-
ing progress. Through self-attention,
Transformers have a particularly large
state. We test this by training several
architectures with various state sizes
in our meta-learning setting. In Fig]

ble memory) of an architecture most
strongly predicts its performance as
a general-purpose learning algorithm.
(@) A large state is crucial for learning-
to-learn to emerge. (b) The parameter
count correlates less well with learning
capabilities.

ure 5.5a, we observe that when we vary the hyper-parameters which most in-
fluence the state size, we observe that for a specific state size we obtain similar
performance of the discovered learning algorithm across architectures. In con-
trast, these architectures have markedly different numbers of parameters (Fig]

ure 5.5b).

88 5.4 Experiments on the emergence of general learning-to-learn

What corresponds to state (memory) in various architectures? Memory N in
the context of recurrent neural networks corresponds to the hidden state or con-
text vector of size Ny, thus Ng € O(Ng). More generally, we can describe the
state as the information bottleneck that the sequence has to pass through before
making predictions. In the context of learning-to-learn, this state has to hold
information about everything that has been learned so far. Standard learning
algorithms such as neural networks trained via SGD would have a state that cor-
responds to the neural network parameters, iteratively updated via SGD. In trans-
formers, self-attention allows for a particularly large state of Ng € O(Ng N Nr)
where N is the size of key, value, and query, N, is the number of layers, and
Nr is the length of the sequence. In addition to [Figure 5.5, Figure D.¢ show
meta-test performance on more tasks and datasets.

Insight 4: Large state is more crucial than parameter count This suggests that
the model size in terms of parameter count plays a smaller role in the setting
of learning-to-learn and Transformers have benefited in particular from an in-
crease in state size by self-attention. Beyond learning-to-learn, this likely applies
to other tasks that rely on storing large amounts of sequence-specific informa-
tion.

5.4.3 Challenges in meta-optimization

Meta-optimization is known to be challenging. Meta gradients [Finn etal], 2017;
Xu et al], 2018; Bechtle et al], 2021]] and works with parameter sharing or weight
updates in their architecture [Kirsch and Schmidhuber, 2027; Pedersen and Kisi,
2021; Risi, 2021] observed various difficulties: Slower convergence, local min-
ima, unstable training, or loss plateaus at the beginning of training (see Appendix
Fig D.T4). We show that some of these problems also occur with black-box

models and propose effective interventions.

Loss plateaus when meta-learning with black-box models By training across
a large number of randomly transformed tasks, memorizing any task-specific
information is difficult. Instead, the model is forced to find solutions that are
directly learning. We observe that this results in (meta-)loss plateaus during
meta-training where the loss only decreases slightly for long periods of time
(Figure 5.6a). Only after a large number of steps (here around 35 thousand)
does a drop in loss occur. In the loss plateau, the generalization loss increases
on unseen tasks from both the same and a different base dataset (Figure 5.6b).
This suggests that being able to first memorize slightly enables the following

89 5.4 Experiments on the emergence of general learning-to-learn

(@) (b) Training loss Unseen FashionMNIST Unseen MNIST
100% permuted labels 2.40
—— Training
4 Unseen FashionMNIST 235
9 —— Unseen MNIST @
s 2 2.30 Tt - -
2 \
2.25
Ok 10k 20k 30k 40k 50k ok 20k 40k ok 20k 40k ok 20k a0k

step step step step

Figure 5.6: Meta-training dynamics often involve an extended period where
GPICLl’s performance is stuck on a plateau. (a) Meta-loss vs. meta-training
step, for a uniform distribution over meta-training tasks. Training tasks are gen-
erated by random transformations of FashionMNIST. (b) A zoomed in view of the
plateau. The loss only decreases slightly and the model memorize small biases
in the training data (decreasing generalization) before the loss drops sharply.

learning-to-learn phase. Furthermore, we observe that all gradients have a very
small norm with exception of the last layer (Appendix [Figure D.T0).

Intervention 1: Increasing the batch size High variance gradients appear to
be one reason training trajectories become trapped on the loss plateau (see Ap-
pendix Figures D.§, D.9). This suggests increasing the meta-batch size as a
straightforward solution. When plotting various batch sizes against numbers of
tasks we obtain three kinds of solutions at the end of meta-training (Figure 5.7a):
(1) Solutions that generalize and learn, (2) Solutions that memorize, and (3) Solu-
tions that are still in the loss plateau (due to maximum of 50 thousand optimiza-
tion steps). The larger the batch size, the more tasks we can train on without
getting stuck in a loss plateau. When plotting the length of the loss plateau
against the task batch size (Figure 5.7b) we observe a power-law relationship
with increasing batch sizes decreasing the plateau length. At the same time, the
batch size also increases the number of total tasks seen in the plateau (Appendix
Fig D.TT). Thus, this intervention relies on parallelizability. An increase in
the number of tasks also increases the plateau length (Figure 5.7c), possibly due
to a larger number of tasks inhibiting the initial memorization phase.

Intervention 2: Changes in the meta-optimizer Given that many gradients
in the loss plateau have very small norm, Adam would rescale those element-
wise, potentially alleviating the issue. In practice, we observe that the gradients
are so small that the € in Adam’s gradient-rescaling denominator (for numerical
stability) limits the up-scaling of small gradients. Using smaller ¢ results in more
than halving the plateau length. Alternatively, discarding the magnitude of the

90 5.4 Experiments on the emergence of general learning-to-learn

lateau, overfit, or generalize?
P! rfit, or g
2%]

NNNNNNN
Q
Plateau length
N
/
/
)
/
)
Plateau length
N

Number of tasks

mmmmmm
mmmmmmmmm
oooooo

26 27 28 29 210 oh 22 217 219 221 223 225
Task batch size Number of tasks

Figure 5.7: Whether GPICL memorizes, generalizes, or remains trapped on a
meta-loss plateau depends on the number of meta-training tasks, and the meta-
training batch size. (a) A phase diagram showing GPICL’s behavior at the end
of meta-training (50k steps). Solutions either memorize, generalize and learn,
or remain in the loss plateau. With additional training steps, configurations in
the plateau might eventually transition to memorization or generalization. Gen-
eralization only occurs with large enough batch sizes and sufficient, but not too
many, tasks. (b) This behavior is explained by the plateau length decreasing with
the increasing batch sizes (reducing the noise contribution), and (c) increasing
with larger numbers of tasks.

gradient entirely by applying the sign operator to an exponential moving average
of the gradient (replacing Adam’s approximate magnitude normalization with
direct magnitude normalization) has a similar effect while also increasing the

numerical stability over Adam with small ¢ (Appendix [Figure D.T2).

0% permuted labels 10% permuted labels

Intervention 3: Biasing the data dis-
tribution / Curricula GPICL mainly -+

relies on the data distribution for —gz_E_,____.,,
learning-to-learn. This enables a dif- ——

90% permuted labels
(d)

(b)

100% permuted labels

ferent kind of intervention: Biasing

the data distribution. The approach ~ nseen ashio

is inspired by the observation that be- <, | L t————L

fore leaving the loss plateau the model e ===
. . . ok 10k 20k 30k 40k 50k Ok 10k 20k 30k 40k 50k

memorizes biases in the data. Instead step step

of sampling label permutations uni- Figure 5.8: Biasing the training dis-

—— Training
Unseen FashionMNIST

formly, we bias towards a specific per-
mutation by using a fixed permutation
for a fraction of each batch. This com-
pletely eliminates the loss plateau, en-
abling a smooth path from memoriz-
ing to learning (Fig 8). Surpris-

tribution is an effective intervention
which prevents a meta-loss plateau. A
uniform distribution over tasks leads to
a long plateau (d), while increasing the
training fraction that corresponds to a
single task reduces the plateau (abc).

91 5.4 Experiments on the emergence of general learning-to-learn

ingly, even when heavily biasing the distribution, memorization is followed
by generalization. Memorization is observed as the initial increase in loss
on unseen tasks in Figure 5.8ab. This biased data distribution can be viewed
as a curriculum, solving an easier problem first that enables the subsequent
harder learning-to-learn. Further investigation is required to understand how
this transition occurs. This may be connected to grokking [Power et al], 2022]
which we investigate in Appendix D.§. We hypothesize that many natural data
distributions—including language—contain such sub-tasks that are easy to mem-

orize followed by generalization.

5.4.4 Domain-specific and general-purpose learning

We demonstrated the feasibility of
meta-learning in-context learning al-
gorithms that are general-purpose.
An even more useful learning al-
gorithm would be capable of both
generalizing, as well as leveraging
domain-specific information for learn-
ing when it is available. This would al-
low for considerably more efficient in-
context learning, scaling to more diffi-
cult datasets without very long input
sequences. Toward this goal, we in-
vestigate a simple scheme that lever-
ages pre-trained neural networks as
features to learn upon. This could
be from an unsupervised learner or a
frozen large language model [Radford
etall, 2021 Tsimpoukelli et al], 2021].
Here, we first project the inputs z; of a
base-dataset D into some latent space
using a pre-trained network, and then
proceed with meta-training and meta-
testing as before, randomly project-
ing these alternative features. For the
pre-trained network, we use a ResNet
trained on ImageNet and remove its fi-

nal layer. In we have meta-

g
=}

1 mmm GPICL without feature embedding
I GPICL with feature embedding

I o o
> o ©

o
N

Meta-test acurracy of last prediction

0.0-
MNIST FashionMNIST KMNIST Random CIFAR10 SVHN
(unseen) (unseen) (unseen) (unseen)

Meta-test task

(meta-trained) (unseen)

Figure 5.9: Using pre-trained networks
allows leveraging domain-specific
knowledge while still generalizing to
other datasets GPICL is meta-trained
on MNIST either with the randomly
transformed raw inputs or randomly
transformed pre-trained features.
Pre-training helps to accelerate meta-
test-time in-context learning on datasets
that have a matching domain, such as
CIFAR10. With only 100 examples,
the learning algorithm can achieve
about 45% accuracy on CIFAR10. The
learning algorithms still generalize to a
wide range of datasets. Error bars are
95% confidence intervals of the mean
across meta-training runs.

92 5.5 Related work

trained GPICL on MNIST either with the randomly transformed raw inputs or
randomly transformed embedded features. At meta-test-time the learning algo-
rithm generalizes to a wide range of datasets, measured by the meta-test accu-
racy of the 100th example. At the same time, the pre-trained ImageNet helps to
accelerate learning on datasets that have a matching domain, such as CIFAR10.
We observe that with only 100 examples, the learning algorithm meta-trained
on MNIST, can achieve about 45% accuracy on CIFAR10. In Appendix we
demonstrate that CLIP [Radford et al], 2021]] embeddings can further improve
learning efficiency.

5.5 Related work

Meta-learning: Inductive biases and general-purpose learning algorithms
Meta-learning approaches exist with a wide range of inductive biases, usually
inspired by existing human-engineered learning algorithms. Some methods pre-
wire the entire learning algorithm [Finn et al], 2017], pre-wire backpropagation
and the structure of a gradient-based optimizer [Andrychowicz et al], 2016; Metz
et all, 20T9b, 20204d], or learn the loss function [Houthooft et al], 2018; Kirsch
et al., 2020b; Bechtle et al., 2021]].

Many methods search over hyper-parameters that alter existing learning algo-
rithms [Xu et all, 2018; Metz et al!, 2020b; Chen et all, 2022]. Fast weight
programmers or hyper-networks update the weights of the same or another neu-
ral network [Schmidhuber, 1992b, 19934; Ha et al], 2017; [rie et al!, 2021b;
Sandler et al!, 2021]; Kirsch and Schmidhuber, 2022b; Zhmoginov et all, 2022],
frequently with various symmetries. There has been growing interest in meta-
learning more general-purpose learning algorithms. Such learning algorithms
aim to be general and reusable like other human-engineered algorithms (e.g. gra-
dient descent). The improved generality of the discovered learning algorithm
has been achieved by introducing inductive bias, such as by bottlenecking the
architecture or by hiding information, encouraging learning over memorization.
Methods include enforcing learning rules to use gradients [Metz et all, 2019b;
Kirsch et al], 2020b; Oh et all, 2020], symbolic graphs [Real et al), 2020; Co-
Reyes et al], 2021]], parameter sharing and symmetries [Kirsch and Schmidhuber,
20217, Kirsch et all, 20224d], or adopting evolutionary inductive biases [Lange
et al), 2023; Li et all, 2023]. Parameter sharing and symmetries have addition-
ally been discussed in the context of self-organization [Tang and Ha, 2021]; Risi,
2021]; Pedersen and Risi, 2022].

93 5.5 Related work

In-context learning with black-box models Black-box neural networks can
learn-to-learn purely in their activations (in-context) with little architectural and
algorithmic bias [Hochreiter et all, 2001; Wang et al), 2016; Duan et al], 2016;
Santoro et all, 2016; Mishra et all, 2018; Garnelo et all, 2018]. This requires
a feedback or demonstration signal in the inputs that allows for learning such
as the reward in reinforcement learning or label in supervised learning [Schmid?
huber, 1993b]. While a frequently used architecture is the LSTM [Hochreiter
and Schmidhuber, 19970; Gers et all, 2000a], this mechanism has also seen
substantial recent attention in Transformer models [Brown et al], 2020; Chan
et all, 2022] under the name of in-context learning. In large language models
(LLMs) demonstrations of a task in the input help solving language-based tasks
at inference (meta-test) time [Brown et al], 2020]. This few-shot learning abil-
ity has been attributed to the data-distributional properties of text corpora [Chan
etal), 2022]. In-context learning has also been interpreted from a Bayesian infer-
ence perspective [Ortega et all, 20T9; Mikulik et all, 2020; Nguyen and Grovetr,
2022; Miller et all, 2022]. Our method GPICL is in the class of these black-
box in-context learners. The number of model parameters has been at the core
of scaling up LLMs to unlock greater capabilities and have been formulated in
scaling laws [Kaplan et al], 2020; Hoffmann et al], 2022]. Our empirical study
suggests that for learning-to-learn, the amount of memory (model state) is even
more predictive of in-context learning capabilities than parameter count.

General-purpose in-context learning While in-context learning has been
demonstrated with black-box models, little investigation of general-purpose
meta-learning with these models has been undertaken. Generalization in LLMs
has previously been studied in regard to reasoning and systematicity [Csordas
etal), 2021]; Delétang et al., 2022; Wei et all, 2022; /hou et al., 2022; Anil et al,,
2022] but not in their ability to learn new tasks in-context. In this work we fo-
cus on meta-generalization instead, the extent to which in-context learning algo-
rithms generalize. In contrast to previous methods, GPICL implements general-
purpose learning algorithms. Independently, Garg et all [2022] recently stud-
ied generalization on synthetic functions compared to our augmented datasets.
VSML [Kirsch and Schmidhuber, 2021] also implements in-context learning
with black-box LSTMs, but makes use of parameter-sharing to aid generaliza-
tion. PFNs [Miller et all, 2022] demonstrated learning to learn on small tabular
datasets when meta-training on synthetically generated problems. Experiments
on more complex classification settings such as Omniglot [Lake et all, 20TT]] re-
lied on fine-tuning. In comparison, our method investigated meta-generalization
of learning algorithms directly to datasets such as MNIST, Fashion MNIST, and

94 5.6 Limitations

CIFAR10 while studying fundamental questions about the conditions necessary
for such generalization. TabPFNs [Hollmann et all, 2022] extend PFNs to larger
tabular datasets.

5.6 Limitations

An important subject of future work is the exploration of task generation beyond
random projections, such as augmentation techniques for LLM training corpora
or generation of tasks from scratch. A current limitation is the applicability of
the discovered learning algorithms to arbitrary input and output sizes beyond
random projections. Appropriate tokenization to unified representations may
solve this [Chowdhery et al], 2022; Zhang et al], 20230].

Furthermore, learning algorithms often process millions of inputs before out-
putting the final model. In the current black-box setting, this is still dif-
ficult to achieve and it requires new advances for in context length of se-
quence models. Recurrency-based models may suffer from accumulating er-
rors, whereas Transformer’s computational complexity grows quadratically in
sequence length. Specifically, our Transformer-based model has a runtime com-
plexity of O(L(n?*d + nd?)) where L is the number of layers, d is the token /
KQV size, and n is the number of tokens. This applies to both (meta-)training
and (meta-)testing.

5.7 Conclusion

By generating tasks from existing datasets, we demonstrated that black-box mod-
els such as Transformers can meta-learn general-purpose in-context learning al-
gorithms (GPICL). We observed that learning-to-learn arises in the regime of
large models and large numbers of tasks with several transitions from task mem-
orization, to task identification, to general learning. The size of the memory
or model state significantly determines how well any architecture can learn
how to learn across various neural network architectures. We identified diffi-
culties in meta-optimization and proposed interventions in terms of optimizers,
hyper-parameters, and a biased data distribution acting as a curriculum. We
demonstrated that in-context learning algorithms can also be trained to combine
domain-specific learning and general-purpose learning. We believe our findings
open up new possibilities of data-driven general-purpose meta-learning with
minimal inductive bias, including generalization improvements of in-context

95 5.7 Conclusion

learning in large language models (LLMs).

96

5.7 Conclusion

Chapter 6

GLAs: Towards black-box &
general-purpose in-context learning
agents

Keywords in-context learning, transformers, supervised reinforcement learning
Article Kirsch et all] [2023] (preprint 2023)

How can GPICL (Chapter 5) be extended to meta-reinforcement learning (meta-
RL)? In this work, we investigate Transformer-based Generally Learning Agents
(GLAs) that learn-to-reinforcement-learn purely via in-context learning.

6.1 Introduction

Improvements in Reinforcement Learning (RL) algorithms are mainly driven by
the research and engineering of humans. Meta-learning instead automates this
process [Schmidhuber, 1987; Parker-Holder et all, 20220] to discover novel RL
algorithms with little human intervention. A key property of human-engineered
learning algorithms is their applicability to a wide range of RL problems. To re-
place such algorithms with automatically discovered ones, those need to be
equally general-purpose [Kirsch et al), 2020b; Oh et all, 2020; Team et al],
2023].

One method of achieving generalization is to integrate inductive bias into
the agent architecture or learning algorithm, such as the use of gradient de-
scent [Kirsch et al], 2020b; Oh et all, 2020]. At the same time, this may limit

97

98 6.1 Introduction

Data Collection

Environment Distribution
PPO Training _
//y_\ . »| Training Dataset D = {7}
Projections
to increase
- . task diversity
Meta-Training Supervised v

Transformer-based P Meta-Training

Generally Learning Agent (GLAs) |~

Augmented Dataset D = {7}

Inference mode

Meta-Testing §

In-context Reinforcement Learning Test environment
° 9009l oy
Generally Learning Agents (GLAs) -
|—_’—| o |ﬁ|

Figure 6.1: Our Generally Learning Agents (GLAs) are meta-trained on aug-
mented RL datasets via supervised learning. First, one or more datasets of im-
proving policies are collected using PPO. Next, these datasets are augmented
with random observation and action projections to create a large diversity of
tasks (environments). A Transformer is then trained to distill the (sped-up) learn-
ing process into a single in-context RL agent. Finally, at meta-test time, we can
take an environment from a different domain (different actuators, observations,
dynamics, and dimensionalities) and learn from rewards purely in-context with-
out explicit hand-crafted RL algorithms or explicit gradient descent.

the discoverable learning algorithms. An alternative to this is to embed the
entire learning algorithm into the black-box neural network such that the net-
work learns-to-learn by in-context learning [Schmidhuber, 1993b; Hochreiter
et all, 2001; Duan et all, 2016; Wang et al], 2016; Brown et all, 2020; Kirsch
etall, 2022a,0]. This requires that the entire learning algorithm be meta-learned
from scratch, such as (re-)discovering the principle of learning by gradient de-
scent [Kirsch and Schmidhuber, 2021; Von Oswald et al!, 2023; Akydurek et all,
2022] and credit assignment from rewards. In supervised learning, Large Lan-
guage Models (LLMs) have led to strong in-context learning capabilities [Brown
et all, 2020]. Scaling laws were discovered that model the increase in predic-
tive performance and capabilities with more training data and model parame-
ters [Kaplan et al], 2020]. Previous work suggested that these are also important
drivers for the generality of in-context learning capabilities (Chapter 5 [Kirsch
et all, 2022b]). In reinforcement learning, generalization of in-context learners
has been limited.

Inspired by these works, we propose a path towards future agents that will be

99 6.2 Meta-learning general-purpose in-context learning agents

able to learn-how-to-learn in-context across a wide range of environments. To
achieve such generalization, a broad task distribution of diverse and challeng-
ing environments will be needed during meta-training. Our Generally Learning
Agents (GLAs, Figure 6.7) are an important first step in this direction. We pro-
pose a framework where agents are able to learn new tasks in-context, without
requiring pre-designed learning algorithms. Our GLAs are meta-trained using
supervised learning techniques [Laskin et all, 2022; Liu and Abbeel, 2023; Le€
et all, 2023] on a dataset of experiences generated from PPO agents. We em-
pirically show that by sub-sampling the generated data, the discovered learn-
ing algorithms are not limited to imitating the PPO learning algorithm but may
discover qualitatively different learning algorithms. We add augmentations to
this dataset in the form of random projections to the observations and actions,
which generates sufficient diversity to result in fairly general RL algorithms to
be encoded into the neural network weights. We demonstrate that our GLAs
are a significant step towards general-purpose cross-domain in-context learners
by meta-testing them on different robotic control problems that were not seen
during meta-training.

6.2 Meta-learning general-purpose in-context learn-
ing agents

In-context RL agents A reinforcement learning (RL) algorithm is a mapping
f : 7 — 0 from agent experience 7 := (s, ag, 70, do, S1,---,SL,0r,7L,dr) to a
policy 7(als,#) with index i € {0,..., L}, observations s;, actions a;, rewards
r;, and terminations d;. We refer to those functions f as learning algorithms,
where the expected return E;[R] is larger than the returns found in 7 and tends
to increase as new experiences are added to 7. Instead of modeling the learning
algorithm f and policy 7 separately, we may also combine those to an in-context
learning policy 7(a|s, 7). Optimizing for 7 to discover learning algorithms then
corresponds to meta-learning. We usually parameterize 7 using neural networks
such as LSTMs [Hochreiter and Schmidhuber, 1997b; Gers et all, 20004], Trans-
formers [Vaswani et al], 20T7], or linear Transformers [Schmidhuber, [1992D;
Katharopoulos et all, 2020; Schlag et al], 202Ta] due to the sequential nature of
T.

"Here we assume that 7 acts in an MDP such that s is a sufficient state representation, but this
can be extended to POMDPs by providing a representation of multiple previous observations
instead.

100 6.2 Meta-learning general-purpose in-context learning agents

Generally Learning Agents (GLAs) Transformer for z(a | s, 7)

t t t t t t

en
| siairydys, SH0yT5dl5S3 530373035, 540474055 | | S50sTsdsSe |

| SooTodos)

Policies with
increasing performance

Figure 6.2: Our RL agents reinforcement-learn purely in-context. A Trans-
former is used to condition on previously observed environment transitions
(si,ai,7i,d;, si11) and predicts the next action. Meta-Training is done on se-
guences of transitions generated from policies with increasing performance.

Meta-learning via supervised learning Meta-optimization often involves stan-
dard RL techniques [Wang et all, 2016; Duan et all, 2016] by directly maximizing
the average return over multiple episodes (together referred to as the lifetime of
the agent). Recently, supervised learning has been very successful in language
modeling [Brown et al], 2020] but also has shown great promise in reinforce-
ment learning [Schmidhuber, 2019; Chen et all, 2021]; Reed et all, 2022].

In this work, we use supervised learning techniques for meta learning = and
demonstrate their potential to be used effectively for training across a broad envi-
ronment distribution to discover novel generalizing RL algorithms. To do so, we
collect sequences of transitions 7 := (zq, ..., zr) with ; := (s;,a;,7;,d;, Sit1)
that correspond to agent behavior with improving performance. Here, we gen-
erate those by running PPO [Schulman et al], 2017] on the meta-training envi-
ronments. We then auto-regressively model the action distribution p(a;|s;, 7.;-1)
given the previous transitions 7.;_;. To go beyond algorithm cloning/distilla-
tion [Kirsch and Schmidhuber, 2021]; Laskin et al], 2022] and exceed the perfor-
mance of the human-engineered learning algorithm that generated the data, we
sub-sample the data: Given a subset of the data Tjo:k where j < k generated from
collection policy 7%, we predict actions in 7,7 where [< m and [>> k that
are generated from the policy 7,7 that was updated by PPO for g iterations. We
refer to ¢ as the ‘gap’ between 7., and 7;.,,. We expect that as we increase the
gap g, we meta-learn RL algorithms that learn more quickly. In summary, our
supervised learning objective that we maximize using gradient ascent is

m

J(0) = =Y Dlp(as)|mo(ailsi, 77 17371 10)] (6.1)

1=l

where D is a divergence, here the sum of the reverse and forward KL. The objec-

101 6.2 Meta-learning general-purpose in-context learning agents

tive as denoted here, only models a single gap g, but in practice we condition
on multiple gaps, i.e. mg(a;|s;, 70, 779, 7729, ... 7, n;). We use a Transformer
with parameters 6 to model 7y, depicted in Figure 6.2. Additionally, we may con-
dition on auxiliary information 7; that describes the amount of improvement that
is expected. Options for 7; are the gap g, indicating how many PPO updates to
distill into 7, or the policy performance (return) at index i, or the location I

within the lifetime [€ 0, ..., L of the agent.

This supervised learning scheme allows us to perform efficient meta-training on
offline data with a stationary objective and without the need for collecting ad-
ditional data. Because the whole data sequence is known in advance, without
intermediate environment interactions, this allows for efficient training of Trans-

formers to model 7. Meta-training is summarized in [Algorithm T0.

Training on broad task distributions If we have already solved the environ-
ments in the meta-training distribution with PPO, why is meta-learning a novel
learning algorithm still useful? We hypothesize that meta-training across a suf-
ficiently broad task distribution allows us to discover novel in-context RL algo-
rithms that can be re-used on many unseen RL problems that we typically care
about. As a proof of concept, in this work we (1) train on various diverse con-
tinuous control problems and (2) augment the supervised training dataset with
random linear projections in its observations and actions to generate sufficient
diversity. For the augmentations, we adopt the randomization methodology
from previous work on supervised in-context learning [Kirsch et al], 2022h]. We
linearly project observations to 64 dimensions, and actions to 16 dimensions.
This also enables to meta-test our GLAs across domains where actuators and
observations are of varying dimensionalities. We demonstrate that this results
in increasingly generalizable in-context learning algorithms for RL.

Meta-Testing During meta testing we simply auto-regressively evaluate the
Transformer starting with an empty history 7 < (), growing 7 with each expe-
rienced transition for K environment interactions. This implements in-context

RL and is described in [Algorithm TT.

102 6.3 Experiments

Algorithm 10 Supervised Meta-Training for GLAs

1: procedure Train(F) > Meta-train on a set of MDPs

2: D« {r.} > Collect a dataset of trajectories with
increasing performance using PPO on
environments e € £

3: f < random parameters > Randomly initialize learning agent ©

4: while not converged do

5: D < augment(D) > Augment D; here using random projections on s; and
a;

6: B «+ sample(D) > Sub-sample transitions from D

7: 0« 60 +aVyJ(0; B) > Update learning agent my via SGD on

8: return Generally Learning Agent g

Algorithm 11 Meta-Testing for GLAs
1: procedure Test(e, mg) > Meta-test on a new MDP e with a generally learning agent

U
2: T+ () > Initialize empty history
3: for k + 1 to K do
4: Use policy my(als,) to obtain a new transition £ = (s, a,r,d, s’) from envi-
ronment e
5: T — & > Update history

6.3 Experiments

Supervised learning discovers learning agents on single tasks To begin, we
demonstrate that our supervised meta-RL algorithm can discover in-context learn-
ing policies that encode a learning algorithm specific to a task. shows
how the mean return increases at meta-test time on a simple grid world and in
continuous control. The grid world consists of a 3x3 grid with directional move-
ment actions and a goal position at a fixed location. For continuous control, we
meta-train on the Ant-v4 MuJoCo environment. We observe that the initial test
return is already larger than a random policy on Ant-v4 — suggesting that the
learned learning algorithm leverages task-specific knowledge.

In-context Learning can be sped-up when the gap is increased How can the
speed of learning be controlled? In (left) we demonstrate how an
increased gap g can speed up learning at meta-test time. We also test the limiting

103 6.3 Experiments

Discrete Control: Grid World Continuous Control: Ant-v4

3000 A

N
o
o
o

—— GLAs
Random policy

Test Return
Test return

-1.0 1 —— PPO

l -
Optimal targets 000
—1.5 — Gap 2
— Gap 8 i
_2‘0 T T T T T T T 0 T T T T T T
0 50 100 150 200 250 300 0 5 10 15 20 25 30
Episodes Episodes

Figure 6.3: Supervised learning discovers in-context learning agents on single
tasks with controllable efficiency. In both grid worlds and continuous control
the mean return increases in-context with more environment interactions when
running the GLAs Transformer. The rate of learning can be controlled by the gap
g used during meta-training. On Ant-v4, the initial agent is already better than
a random policy, suggesting that the learned in-context RL algorithm leverages
task-specific knowledge. Shading indicates 95% confidence intervals with 64
meta-test training seeds.

case of a maximally large gap ¢ that corresponds to the action targets taken by
the optimal policy in the dataset. We find that in the case of a single task, the
network simply learns the optimal policy.

757 Figure 6.4: In-context learning agents
50 1 ontask trained via supervised-learning can
£ 25| il ,;.w\p M — 1 adapt to task changes. On the standard
g of WY +1 Ant-Dir meta-learning benchmark the
E | _ :jt'EEd " agent adapts when having seen both
i s tasks during training, but does not learn
=30 ey "W“'n’v‘."""‘w"\‘“ in-context on an unseen task. Shading
—73 . . indicates 95% confidence intervals with

0 >0 100 64 meta-test training seeds.

Episodes

Standard meta-learning benchmarks (simple task distributions) How does the
meta-test behavior change when we move from single tasks to task distributions?
Here we begin by using a standard meta-learning task distribution, the Ant-Dir
environment [Finn et all, 20T7] that involves the forward and backward task.
The task is not part of the policy inputs, and thus has to be inferred from ob-
servations and rewards. In the Ant-Dir environment (Figure 6.4), we observe

104 6.3 Experiments

that training on a single task only allows for learning on that particular task, but
does not generalize to the task of moving into the other direction. Conversely,
meta-training on both environments allows for in-context learning in either task.
We observe that for some meta-test training seeds, the task is incorrectly rec-
ognized, resulting in larger confidence intervals. The policy then follows the
incorrect task. We hypothesize that this is a difficulty with the supervised meta-
training objective on such meta-task distributions where the task is determined
early in meta-test training and future actions simply condition on states seen dur-
ing meta-training, independent of the task rewards. This may be alleviated by
broader task distributions.

Generalization fails to significantly different tasks and environments We
have motivated this work with the goal of in-context learning agents that gener-
alize to a wide range of environments, across domains. Given this rather simple
training distribution, we would not expect the agent to generalize to a differ-
ent environment such as Cartpole or Reacher. To do so, we need to scale the
diversity of the data distribution.

Reacher-v4 HalfCheetah-v4
201 —100 A
g 30 —125
Figure 6.5: GLAs generalize to novel ?’; ~40 1 ~1501
domains via in-context RL. After meta- © —so- ~1751
training on augmented Ant-v4, the _g] 2001
agent can learn in-context on Reacher- 0 500 1000 0 20 40 60
v4, HalfCheetah-v4, and DeepMind- vt pop | TelCopole¥balance
Control Cartpole. Shading indicates ol
95% confidence intervals with 32 meta- 3 41
test training seeds. g 200 3001
01 250

50 100 150 0 20 40 60
Episodes Episodes

o

Scaling the task distribution enables cross-domain generalization Next, we
augment the dataset by randomly projecting observations and actions, as de-
scribed in Section 6.7. Here, we meta-train on the augmented Ant-v4 environ-
ment. This makes it impossible to directly encode the optimal policy and forces
GLAs to learn in-context. Instead of just meta-testing the in-context learning
agent on the same Ant-v4 environment or variations thereof, we also apply it
to entirely different domains in Figure 6.5. We observe, that the agent to some

105 6.4 Conclusion

extent implements a learning algorithm that applies across domains. It performs
in-context learning not just on the seen Ant-v4 environment (with an unseen
random projection), but also generalizes its learning algorithm to the Reacher-
v4, HalfCheetah-v4, and DeepMind-Control Cartpole environment. The result-
ing performance is still sub-optimal compared to PPO (Figure 6.6), but there is
visible improvement (test-time learning) on tasks with different actuators, task
dynamics, and observations. Meta-training on a much broader task-distribution
of many continuous control tasks combined with augmentations as proposed
here may significantly improve these results.

Reacher-v4 HalfCheetah-v4
I 2000 1 Figure 6.6: High sample efficiency
g i — but early convergence. The RL algo-
i@““’ / 1000 PPo rithm discovered by GLAs tends to be
60| 0 £ .. more sample-efficient than PPO, but
0 e o e s converges to significantly lower perfor-
Antva amocartpoletbalance. Mance. We expect that training on

=T a broader task distribution in conjunc

tion with larger models and longer con-
500 600 - .
-»«/’/M‘“ text length would improve these results.
°] 4001 s Ohading indicates 95% confidence inter-
~5001 P .g 0 L.
200 - vals with 32 meta-test training seeds.

102 104 106 103 104 10°
Env (in-context) step Env (in-context) step

1000 8001

Test return

6.4 Conclusion

Reinforcement Learning (RL) research has produced a wide range of methods
for learning from rewards. In this work, we instead searched for novel RL al-
gorithms purely by conditioning on previous experience from the environment,
without any explicit optimization at meta-test time. Compared to previous work
in memory-based and in-context meta-RL, we have shown that given a suffi-
ciently rich environment distribution, the discovered RL algorithms start gen-
eralizing across domains, moving us closer to automating RL research through
meta-learning. To achieve this, we collected an offline dataset of agent experi-
ence with improving performance and then augmented the dataset with random
projections in observation and action space. When meta-trained on these en-
vironments using supervised learning, the resulting RL algorithms encoded in
our Generally Learning Agents (GLAs) generalize to robotic control problems

106 6.4 Conclusion

that are significantly different from training, such as meta-training on Ant and
learning in-context on the Reacher and Cartpole environments. At this point,
the discovered learning algorithms converge early and result in suboptimal per-
formance.

We believe our approach provides a foundation for new large models, trained
across an extremely diverse set of RL environments, to enable efficient learning
from feedback far beyond our current RL algorithms. Based on our initial exper-
iments in this work, we plan to further improve generalization, robustness, and
performance at meta-test time. Further broadening the task distribution with gen-
erated, real, and augmented environments will improve the (learning) capabili-
ties of our GLAs agents. Post-training of existing large language models (LLMs)
instead of training from scratch may be a promising direction. Finally, develop-
ing sequence models that efficiently can process and compress hundreds of thou-
sands of environment transitions [e.g. Schlag et al], 202Ta; Gu et all, 2027]; Lu
et all, 2023] will be important to improve the efficiency and expressivity of both
learning and acting at meta-test time. The quadratic computational complexity
of Transformers in sequence length remains a challenge for both meta-training
and meta-testing with large numbers of environment transitions.

Chapter 7

FME: Eliminating meta-optimization
and recursive self-improvement

Keywords in-context learning, recursive self-improvement, self-referential, meta-
optimization
Article Kirsch and Schmidhuber [2022H] (preprint 2022)

As we have seen in the last few chapters, meta-learning automates the search for
learning algorithms. At the same time, it creates a dependency on human engi-
neering on the meta-level, where meta-learning algorithms need to be designed.
To avoid this, in this chapter we investigate systems that recursively self-improve
in a positive feedback loop, where every improvement of the system to itself
can lead to further, possibly even faster, improvements. We discuss methods to
do so without the need for explicit meta-optimization, reducing our reliance on
human engineering.

7.1 Introduction

Machine learning is the process of deriving models and behavior from data or en-
vironment interaction using human-engineered learning algorithms. Meta learn-
ing takes this process to the meta-level: Its goal is to derive the learning algo-
rithms themselves automatically as well [Schmidhuber, [1987; Hochreiter et all,
200T; Wang et al!, 20T6; Duan et al!, 2076; Finn et al], 2017; Flennerhag et all,
2020; Kirsch et al], 2020b; Kirsch and Schmidhuber, 2021]]. Unfortunately, this
usually creates a dependency on human engineering on the meta-level, where
researchers now have to design meta learning algorithms. In this chapter, we

107

108 7.1 Introduction

investigate recursively self-improving meta-learning systems (RSI) [Schmidhuber,
2009; Schmidhuber et all, T997] that do so without the need for explicit meta-
optimization, reducing our reliance on human engineering. Starting from a sim-
ple initialization, every improvement of the system to itself can lead to further im-
provements in a positive feedback loop, potentially accelerating improvements
over time. Ideally, this process would be open-ended, i.e. produce better and
better machine learning systems indefinitely without human intervention.

We discuss different possible substrates for such RSIs, such as memory-based
in-context learners and a fully self-referential neural architecture [Schmidhuber,
1993K]. In the latter, all variables of the system are under the control of the
system itself, including its own weights. We identify necessary conditions for
such self-referential architectures and discuss possible implementations.

A major challenge of such systems is to ensure that changes lead to actual im-
provement, rather than degradation of capabilities. Because the improvement
operator itself is being modified, it is difficult to guarantee that changes will lead
to better performance in the future. While in principle changes could be proven
to be beneficial [Schmidhuber, 2009], finding such proofs is difficult in practice,
especially when the system is implemented by a neural network. Instead, we fo-
cus on empirical methods to ensure that self-modifications lead to long-term im-
provement. At the same time, we argue that the meta-heuristic that ensures these
long-term improvements should be as simple as possible, to avoid irreversible
inductive bias in the entire system that can not be self-modified later. For ex-
ample, were we to implement a standard evolutionary algorithm [e.g. Wierstra
et al], 2008; Salimans et all, 20T7] to ensure this improvement, this algorithm
would be always part of the system, sitting at the meta-level, and could not be
changed. To that end, we propose fitness monotonic execution (FME), a simple
approach to avoid explicit meta-optimization. We empirically demonstrate this
in the context of a neural network that self-modifies to solve bandit and classic
control tasks, improves its self-modifications, and learns how to learn purely by
assigning more computational resources to better performing solutions.

Finally, we discuss how pre-trained models and human-designed learning algo-
rithms such as Large Language Models (LLMs) and backpropagation are great
candidates to bootstrap a process of recursive self-improvement with minimal
human intervention.

109 7.2 What is needed for recursive self-improvement (RSI)?

7.2 What is needed for recursive self-improvement
(RSI)?

A recursively self-improving system is a system that can improve itself, and these
improvements lead to further improvements in a positive feedback loop. To
build such a system, we first need to choose a substrate and initialization that is
general enough to allow for arbitrary self-modifications. We can frame this as
choosing a reference Turing machine and its initial program, ensuring that the
substrate that we pick is Turing complete in its self-modifications.

7.2.1 Partially or fully self-referential architectures

In-context learners are partially self-referential Let’s first consider a neural
implementation of such a system. As we have seen in earlier chapters (e.g.
Chapter 3), neural networks that update their weights or memory (in-context
learners) are equivalent in their expressive power. Nevertheless, in both cases
there exist free variables (usually weights) that are not updated by the dynamics
of the system itself, but by a human-engineered (meta-) learning algorithm or
initialization. Would such a system be sufficient to generate an RSI or would
we require full self-reference where all variables (weights and activations) are
modifiable by the system itself [e.g. Schmidhuber, T993k]?

Fully self-referential architectures While activations and memory in a neu-
ral network change dynamically, the weights of a neural network are usually
updated by a fixed human-engineered learning algorithm. It thus may seem
intuitive to reason that a neural network may recursively self-improve if it was
capable of modifying its own weights as well. One previously suggested way of
achieving this is to bring both the activations and weights in a neural network
under the control of the network itself [Schmidhuber, T993k]. This is referred to
as a self-referential neural architecture. Compare this to a conventional neural
network where there is a subset of variables (called the weights or parameters)
that are only updated by a fixed learning algorithm (such as backpropagation).
This entails that part of the (meta-)learning behavior is fixed and needs to be
defined by the researcher. In contrast, fully self-referential architectures control
all variables. This includes activations (conventionally updated by the neural
network itself), weights (conventionally updated by a learning algorithm), meta
weights, etc.

110 7.2 What is needed for recursive self-improvement (RSI)?

Notation In the remainder of this chapter, we denote external inputs to the
neural network as x € R™= (such as observations and rewards in Reinforcement
Learning, or error signals in supervised learning), outputs as y € R¥ (e.g. ac
tions in Reinforcement Learning), and the parameters of the neural network as
6. Further, we denote time-varying variables (memory) as h € R (such as the
hidden state of an RNN). We summarize all variables in a neural network as

¢=1{0,h,y}.

A self-referential architecture ¢ < g4(x) is described by function g that may
update all the variables ¢ = {0, h,y}. The network controls all of its variables
in the sense that any elements of ¢ can be changed by the network itself.

Is full self-reference necessary for RSI? We have previously reasoned, that a
recursively self-improving system may benefit from controlling all of its variables,
including the neural network weights. Next, we show that such self-referential ar-
chitectures do not have a fundamental representational advantage over memory-
based architectures (in-context learners) when the free (initial) variables are meta-
optimized using a human engineered learning algorithm.

We defined self-referential architectures ¢ <— g4(x) as those that can update all
their variables ¢. For notational purposes, we can express y as the explicit output
¢,y < gg(x). Compare this to a memory architecture such as a recurrent neural
network h,y < fy(h,z) parameterized by 6 where h corresponds to its hidden
state (memory). Can the self-referential architecture represent any functions that
the memory architecture can not? A commonly used intuition [Schmidhuber,
19930] is that self-referential architectures are self-modifying, in that they change
their own weights, affecting not only their outputs and current weights but also
future weight changes through g,. These architectures can thus not only learn,
but also meta-learn, meta-meta-learn, etc. While memory architectures do not
update their weights, they can also be self-modifying. Changes in memory h
affect the output directly, but also the effective function f, by modifying its
input A, in turn determining future changes to h. More generally, it directly
follows from the Turing completeness of RNNs [Siegelmann and Sontag, 199T]]
that we can use in-context learners (memory-based architectures) to simulate
self-referential systems:

Observation 7.2.1. For any self-referential architecture ¢,y < g4(x) and some
initial ¢9 we can find a memory architecture h,y < fp(h,x), 6, and initial hg
such that for any sequence of x;.7 we have f(a:lzT) = ¢(x1.7) where f and g are
the unrolls returning y,.7 of f and g respectively.

111 7.2 What is needed for recursive self-improvement (RSI)?

@ (b)

Can simulate
Learning each other Updates

Meta Learning ; v

Meta Meta Learning
: Parameters 0 Learning Algorithm
i Memory
Updates) : affects
Updates itself ! updates Updates
' v
Initalization JAW Learning Algorithm & g Model / Poli
) Model/Policy ¢ [l edel/Tolley

¢’y <« g(/)(x) h’y <_f0(ha X)

Figure 7.1: Self-referential (a) and memory-based (b) architectures (in-context
learners) can represent the same function class and both require meta op-
timization. Self-referential networks can directly update all of their weights,
whereas memory-based networks can self-modify through memory updates.
The former require meta optimization of the weight initialization ¢,, the latter
require the initial memory hy and weights 6.

Proof sketch. From the Turing completeness of RNNs [Siegelmann and Sontag,
1991], it follows that we can construct an RNN simulator fy (with sufficiently
large parameterization 6) that stores ¢ in h and sets 6, hq such that at each step
t € N it performs the same computation as g, by taking ¢; from h;, computing
¢1+1, and storing it in by . O

Furthermore, any memory-based architecture can be represented by a self-
referential architecture where a subset of variables is updated by the identity
function. In conclusion, the function class that can be represented by self-
referential architectures is equivalent to memory architectures, given sufficiently
rich parameterizations. This is visualized in Figure 7.1. For both memory ar-
chitectures and self-referential architectures the same question arises: How do
we set the free variables 6, hg, or ¢, in the absence of direct meta optimiza-
tion?

7.2.2 Substrates for RSI

Given our previous analysis of in-context learners and self-referential architec-
tures, we can now discuss possible substrates and initializations for building a
recursively self-improving system.

112 7.2 What is needed for recursive self-improvement (RSI)?

Universal initialization Our first option is to pick any Turing complete in-
context learners, such as an LSTM [Hochreiter and Schmidhuber, 1997b] or
an auto-regressive transformer [Schuurmans et al], 2024], and initialize its non-
modifiable variables (weights) to be universal in the sense that any behavior
and learning is expressible in changing h. This would require us constructing
such a universal initialization, which may be non-trivial. We leave this for future
work.

Large language model initialization A useful initialization may also be a large
language model (LLM). Assuming that an LLM is a universal computer [Schuur-
mans et all, 2024], in principle context updates are sufficient to cover all pos-
sible solutions and learning algorithms. We discuss this in more detail later in

and in CRapter 8.

Random initialization, but modifiable Finally, we may choose a fully self-
referential architecture and initialize all its variables randomly. Due to the full
self-reference, all variables are modifiable by the system itself, potentially revert-
ing any initial inductive bias. This is the option that we explore in the remainder
of this chapter.

7.2.3 How to construct a fully self-referential architecture

In this section, we discuss necessary conditions to construct a fully self-
referential architecture and possible implementations.

Necessary Conditions A self-referential architecture ¢ < g,(z) is described
by a connected computational graph for the function ¢ that has variables
¢ = {0,h,y} (one node per scalar). The network controls all of its variables
in the sense that any element(s) of ¢ can be changed by the network itself. This
blurs the distinction between activations (memory) h and weights 8. Compu-
tational graphs that fulfill this definition are required to have a certain struc-
ture. At least some variables need to be reused in multiple operations (node
out-degree > 1). We refer to this as variable sharing, a generalization of weight
sharing [Fukushima, 1979] extending beyond classical weights.

As an illustrating example, consider a square dense weight matrix. It consists
of N2 weights and N activations. While the activations are time-varying, the
weights are source nodes in the computational graph and cannot be directly
updated by actions of the network itself. To change that, we need to derive N?

113 7.3 Method: Fitness Monotonic Execution

variables from N time-varying variables. This can only be done by reusing some
of the same N time-varying variables in multiple operations, generating the N2
variables.

Observation 7.2.2. Variable sharing in self-referential systems. Assuming a
connected computational graph, an architecture that updates all its variables
¢ € R in iteration ¢ needs to reuse elements of ¢ multiple times in the com-
putational graph to generate ¢,,; € R™¢ from ¢, € R™. Importantly, the con-
nectivity constraint applies to the subgraph whose nodes represent entries of ¢,
and not to the graph induced by the additional inputs z.

Proof sketch. By the pigeonhole principle, as there are no more elements in ¢,
than there are in ¢;,1, any operation generating an element in ¢;,; that makes
use of more than one element in ¢; needs to reuse an element already in use by
a different operation. O

Implementations Under the previous constraints, various implementations for
self-referential neural architectures are conceivable. Schmidhuber [T993D] as-
signs an address to each weight such that the network outputs can be used to
attend to weights and both read and write their values. Instead of updating one
weight at a time, the fast weight programmers (FWPs) of 1992-93 [Schmidhu;
ber, 1992d, 1993d] are networks that learn to generate key and value patterns
to rapidly change many fast weights simultaneously (although not all FWPs are
fully self-referential). Outer products between activations (a type of variable
sharing) are used to derive M x N variables, M, N € N, from M + N variables.
This allows for updating all the weights of a neural network layer by its own acti-
vations [Irie et all, 202714]. Alternatively, a coordinate-wise mechanism may gen-
erate all updates continuously as a function of the weight address [D’Ambrosio
and Stanley, 2007]. Other works have used multiple RNNs with shared weights
and messaging passing between those to increase the number of time-varying
variables h arbitrarily while keeping the number of parameters ¢ constant [Rosa
et all, 20T9b; Kirsch and Schmidhubelr, 2021]]. Such systems can be made self-
referential by using a subset of h to update parameters 6.

7.3 Method: Fitness Monotonic Execution

In the previous section, we discussed possible substrates for building a recur-
sively self-improving system. We concluded that both memory-based architec-
tures (in-context learners) and fully self-referential architectures are sufficient

114 7.3 Method: Fitness Monotonic Execution

from a representational perspective, but identified that an appropriate initializa-
tion of the free (initial) variables is required.

Next, we propose a method, fitness monotonic execution (FME), that avoids ex-
plicit meta optimization of these free variables. Instead of modifying ¢ directly
using a human-engineered learning algorithm, we simply select between differ-
ent configurations of ¢ that are generated using self-modifications. In particular,
through interactions with the environment we continuously add new solutions
to asetof & = {¢;}. Computation time is distributed across solutions monotonic
in their performance, i.e. better performing solutions are executed longer (or are
selected for execution more frequently). This can be formalized as a pmf p(¢)
that assigns each solution ¢ € ® a probability for being executed at any given
time-step based on its average reward %ﬁ’) relative to other solutions (where At
is the solution’s total lifetime). This can be further normalized by the frequency
of solutions (e.g. the performance of solutions determines the probability, not
their identity) to prevent many bad performing solutions to dominate over few
good ones. As a special case, p may put all probability mass on the current best

solution, greedily selecting for improvement. See [Algorithm T2 and Figure 7.2
for a full description.

As fitness monotonic execution does not prescribe in a fixed scheme how any so-
lutions are modified — solutions determine this themselves — fully self-referential
architectures are well suited. Compared to conventional meta-optimizers, if any
variables were not self-modified when employing FME, their value would never
be changed and remain fixed to their initial value.

Algorithm 12 Fitness monotonic execution

Require: Initial solution(s) ® = {¢;}, self-referential architecture g4, probability
p(¢), an RL environment
while forever do

¢ ~ p(¢) where ¢ € O > Sample next solution to execute,
monotonic in its performance
b, Y.L g5 (1:1) > Execute ¢ for L steps with 1., from the
environment E including a feedback
signal
¢ — dU{¢} > Add new ¢ to ®

Least-recently-used Buffer To limit the number of solutions we need to store,
we implement fitness monotonic execution with a least-recently-used (LRU)

115 7.3 Method: Fitness Monotonic Execution

50
More computational resources
to better solutions — "
/ —
70 > 80 —>

Stochasticity from
* Policy

* Environment
¢ Input noise

Self modifications

v

Execution time

>
>

Figure 7.2: In fitness monotonic execution (FME) the system self-modifies from
a random initialization. Better performing solutions are executed longer (or
selected more frequently). In effect, solutions self-modify their behavior, learn-
ing, meta learning, meta meta learning, etc without a fixed scheme for meta
optimization prescribing how parameters are updated.

116 7.4 Experiments

buffer. It consists of m buckets where each bucket holds recent solutions in
a specific performance range. Solutions from buckets with higher performance
are sampled exponentially more frequently.

Outer-product-based Architecture For the self-referential neural network ar-
chitecture, we chose an outer-product mechanism adapted from prior work [Irie
et al], 202T4]. By applying a weight matrix W,_; € RN=*(NVy+2Nat4) 15 some
input z; € RY= we generate the output y, € RV, key k, € Rz, query ¢, € Rz,
and a learning rate 5, € R*. Using an outer-product, the key and query generate
an update to the weight matrix W,_;, obtaining W;:

Yt, ke, Gr, Br = Wi_19p(xy) (7.1
v = Wi (ky) (7.2)

v = Wit (ar) (7.3)

Wi =W+ 0 (B) (W (vr) — (0r)) @ (k) (7.4)

where 1) is the tanh activation, o is the sigmoid function, and ® is the outer
product. The learning rate 3, € R* controls the rate of update to the four parts
generating v, k, ¢, 5. We stack multiple such self-referential layers.

7.4 Experiments

We empirically investigate several questions: Firstly, starting with a randomly
initialized solution, can the network modify itself to solve a bandit task? We
compare this to a hill climbing strategy where ¢ are modified by ¢;,1 = ¢; + ¢
with variance-tuned Gaussian noise ¢ ~ N(0,0?) and selection is equivalent
to FME. Secondly, how do self-modifications compare when solving a markov
decision process? Thirdly, given a bandit task that is non-stationary, can the
network learn to modify itself based on the reward it receives as input? Refer to

for implementation details.

Learning a Bandit Policy The first question we investigate is whether a
randomly initialized self-referential architecture is capable of making self-
modifications that lead to a useful policy for a given task. We test this on a
simple 2-armed bandit where one arm gives payouts (rewards) of 1 and the
other 0. From (left) we observe that after around 40 self-modifications
and selections a solution is found that always selects the arm with a higher pay-
off. We compare this to hill climbing with a variance-tuned Gaussian noise on

117 7.4 Experiments

Bandit task Cartpole task
10 0.00
c 1.0
C
2 § -0.014
= =}
? 0.9 1 g —0.021
B B _0.03-
Q g
5 0.8 ‘S —0.04 A
0 ")
4 ¢
5 — Hill climbing g 70057 —— Hill climbing
& 0.7 1 Fitness Monotonic Execution | * _p.06 - Fitness Monotonic Execution
0 20 40 60 80 100 0 200 400 600 800 1000
Iteration Iteration

Figure 7.3: Self-modifications lead to policy improvement and improve future
improvements. A randomly initialized self-referential architecture makes mod-
ifications to itself to solve a two-armed bandit problem (left). On a Cartpole
task (right) the self-modifications not only directly improve the policy, but also
improve future improvements, resulting in faster learning compared to hill climb-
ing. The found policy balances the pole for about 100 steps. Standard deviations
are shown for 5 seeds.

the network parameters. Hill-climbing is a natural baseline, as it proposes new
solutions using a fixed scheme (instead of self-modifications) and then chooses
the best solution. Thus, it validates the usefulness of self-modifications. To
match this baseline closely to FME, we simply replace self-modifications with
fixed variance-tuned Gaussian noise and keep the selection scheme identical.
We observe that in this simple environment, fitness monotonic execution is as
effective as hill climbing to find an optimal solution to this bandit problem.

Cartpole Next, we increase the difficulty of the policy to be found by running a
self-referential network on the Cartpole task (Figure 7.3, right). We observe that
reaching a good performing policy takes significantly more self-modifications
and selections. At the same time, a simple hill climbing strategy (with tuned
noise) fails at improving the policy at the same rate as the self-modifying ar-
chitecture. This suggests that we are not only selecting for good policies but
also strategies for self-modification that lead to policy improvement in the fu-
ture.

Meta Learning a Bandit Learning Algorithm Given a non-stationary task, a
good policy can not exhibit a fixed behavior but must adapt to changing re-
wards (learn). We test the capabilities of fithess monotonic execution to adapt

118 7.5 Related work

s T

—— FME with reward

o
~
[6,]

Action probability
o
w
o

Figure 7.4: Learning to learn (to FME without reward
learn?) Given the reward as input, S 0.25 “ JL J"
self-modifications enable adaptation <y, I all |
to swapping of the good arm in a two- £ 17 T ' B
armed bandit. _r.g “ ‘L ‘|F
8- il | |

0 200 400 600 800 1000
Step

to a changing bandit task. In we swap the good and bad arm at ran-
dom intervals. We further feed the reward as an input to the policy such that it
can adapt its behavior based on the reward. We observe that fitness monotonic
execution leads to self-modifying policies that change their action (learn) in re-
sponse to the reward they previously received. In contrast, if this reward is not
fed as an input, the policy fails to adapt.

7.5 Related work

In-context Learning and Fast Weight Programmers In-context learn-
ing [Hochreiter et all, 2001, Wang et al., 2016¢; Duan et al), 2016; Brown
et all, 2020] (or memory-based meta learning) describes neural networks that
learn-to-learn purely within their activations. This is enabled through the
inclusion of a feedback signal or demonstration in the network inputs [Schmid?
huber, 1993b]. Previous work has demonstrated the capabilities of neural
networks to encode human-engineered learning algorithms such as backprop-
agation [Linnainmad, 1970] purely in the forward-pass of neural networks
or to discover more efficient learning algorithms from scratch [Kirsch and
Schmidhuber, 2021]. Closely related to in-context learning are fast weight
programmers (FWPs) that learn to update weights explicitly [Schmidhuber,
1992d, 1993d; Miconi et all, 2018; Schlag et al], 2021b]. The principles that
connect in-context learning with learned weight updates are parameter sharing
and multiplicative interactions [Kirsch and Schmidhuber, 2021 Kirsch et al/,
20224d]. Almost all in-context learners to date are not fully self-referential and
require (meta-)parameters to be explicitly meta-optimized by known learning
algorithms.

119 7.6 Discussion

Self-referential Meta Learning and Recursive Self-Improvement Recursively
self-improving systems enhance their design, which in turn accelerates their im-
provements in a positive feedback loop. The Godel machine is such a system
which is based on provably optimal self-modifications [Schmidhuber, 2009]. In
this work, modifications must not be proven to be optimal, but are instead com-
putationally prioritized based on their performance. For a system to change
all its properties, self-referential meta learning makes all variables (weights and
activations) time-varying and modifiable to the neural network itself [Schmidhus-
ber, 1993D; [rie et al), 20214; Flennerhag et all, 2021]. As we have discussed
in this work, both self-referential neural networks as well as in-context learners
can in principle implement learning, meta learning, meta meta learning, etc in
their neural network dynamics. This still requires explicit meta optimization of
some (initial) parameters. In contrast, we introduced fitness monotonic execu-
tion (FME) to allow self-modifications to govern (meta-)learning without explicit
meta optimization. A related algorithm to this is the success story algorithm
(SSA) [Schmidhuber, 19944; Wiering and Schmidhuber, 1996b; Schmidhuber
et all, [T997]. In this algorithm, regular checkpoints of the learner are created
and self-modifications are reverted when the average reward decreases. Differ-
ent from our approach, this process is sequential and keeps only a single history
of self-modifications. This potentially limits parallelizability on modern hard-
ware and results in slower exploration.

Portfolio Algorithms Portfolio algorithms [Huberman et all, 1997] are algorith-
mically related to FME, although view the selection of the algorithm/solution as
the ‘meta learning’ problem [Gagliolo and Schmidhuber, 201T]. This is different
from FME where the meta learning can happen within the algorithms themselves
and the aim is to put minimal assumptions/biases into the execution of solutions
(portfolio schedule).

7.6 Discussion

Limitations This chapter represents an initial discussion of recursively self-
improving systems that do not rely on fixed human-engineered meta optimiza-
tion. The empirical evaluation is still minimalistic at this time but should be
a good starting point for larger experiments and improvements. Our intention
is to incite further interest in this research direction. Whether FME qualifies as
a (minimalistic, gradient-free) meta-optimizer remains an open semantic ques-
tion. Conventional optimizers prescribe how solutions are adjusted in response

120 7.6 Discussion

to an external feedback signal; by contrast, the modifications produced by FME
are self-generated by the system, thereby reducing the designer-imposed bias
typical of conventional meta-optimizers.

Alternative initializations While the initial ® = {¢;} can be set randomly,
initial (meta-)learning progress may be slow. Instead, human-engineered meta-
optimization can be used initially and then switched to fitness monotonic ex-
ecution. Alternatively, we may also initialize our self-referential meta-learner
with a human-engineered learning algorithm such as backpropagation [Kirsch
and Schmidhuber, 2021]. This may speed up the initial learning process and
allow the system to bootstrap itself to a more efficient learning algorithm. The
self-referentialness of the system may allow it to reverse any initial inductive bias
that was introduced by the human-engineered initialization.

Recursively self-improving LLM-based systems A useful initialization to boot-
strap recursive self-improvement may also be a large language model (LLM) (Fig]
ure 7.5). The model can self-improve in various ways. In the simplest case,
the LLM may self-modify by running the model in inference mode, updating
its context as it goes. This context can be used to accumulate knowledge and
skills. Assuming that an LLM is a universal computer [Schuurmans et all, 2024],
in principle context updates are sufficient to cover all possible solutions and
learning algorithms. Beyond this, the LLM could also generate code for new
tools that when called can update the context, change the code (control flow)
that defines how the LLM is called, or train new models that when called in-
ject results into the context. Finally, such a self-improving LLM could even be
entirely self-referential where the LLM writes machine learning code that pro-
duces updates to its own parameters or replacement. We further discuss this in
the next on automating Al research with Al Scientists. Indeed, since
first writing this chapter, researchers have taken the first steps to prompt LLMs
to update LLM prompts (context) [Fernando et all, 2023] or write code to im-
prove their own functioning [Zelikman et all, 2023]. While these approaches
are still limited in their expressivity and are not yet leading to fully open-ended
recursive self-improvement, these are important first steps in this direction. One
significant limitation of Zelikman et all [2023] is that compared to FME, there
is no guarantee that self-modifications are actually maximizing the return. Im-
provements purely rely on the in-context learning behavior of the LLM.

121 7.6 Discussion

Initialization Modifiers State

LLM Model Updates
with parameters 6 inference

Context i

When called

When called

Other model ¢

> Weights ¢ EEEEEEEEEEETEERE

Figure 7.5: LLMs may enable various kinds of different self-referential self-
improving systems.

Self-modifying Architecture We described a meta learner that can self-modify
all its variables including those that define the self-modifications, but its archi-
tecture is still hard-coded. While many architectures are computationally uni-
versal [Siegelmann and Sontag, [199T], modifications may still be useful for effi-
ciency reasons [Miller et all, 1989; Elsken et al], 20T9]. In fitness monotonic
execution, the self-modifications do not require differentiability. Thus, self-
modifications can be extended to include architecture modifications ¢, y, g +
gs(x), such as adding or removing neurons and weights, changing operations,
and (un-)sharing variables.

Communication between Solutions/Agents Solutions are executed entirely
isolated in the present experiments. Through fitness monotonic execution, they
compete for computational time. Related to approaches simulating artificial
life [Langton, T997], this may be extended to collaboration and other inter-
actions through the addition of communication channels between solutions
(agents).

Where does the reward come from? In this chapter, we assumed a fixed re-
ward signal from the environment. For open-ended recursive self-improvement,
this reward signal will need to be generated internally, such as by driving the
system through artificial curiosity [Schmidhuber, 19914d], rewarding the learn-
ing progress about the environment. This could for instance be framed as au-
tomatically making scientific discoveries (Chapter 8) that lead to information
gain about the world. A natural alternative formulation of reward is the acqui-
sition of compute resources, naturally tying an agent’s ability to obtain and use
more computational resources to its capacity to self-improve. Furthermore, in

122 7.7 Conclusion

natural evolution, organisms that found or built their niche are not necessarily
required to further increase their fitness. To build a similar fithess monotonic
execution system, the increase in compute with more reward may flatten out
at some point, encouraging exploration and diversity of solutions. This is re-
lated to minimal criterion research in the open-endedness community [Brant
and Stanley, 2017].

7.7 Conclusion

In this chapter, we discussed recursively self-improving systems that reduce our
reliance on human engineering to the largest extent possible. In particular this
means avoiding the use of human engineered learning algorithms on the meta
level. We showed that in order to construct systems that can change all their
parameters (or variables more generally), functionality needs to be reused. This
is done in the form of parameter (variable) sharing. We further demonstrated
the representational equivalence between neural networks in-context learning
with memory and self-referential architectures while highlighting the benefit of
self-referential architectures in the absence of meta optimization. Then, we pro-
posed fitness monotonic execution (FME), a simple approach to avoid explicit
meta optimization and to ensure long-term improvement. A neural network self-
modifies to solve bandit and classic control tasks, improves its self-modifications,
and learns how to learn, purely by assigning more computational resources to
better performing solutions. While this system self-improved in a self-referential
way, it does not yet exhibit recursive self-improvement in an open-ended man-
ner. Instead, it converges to a fixed solution, which given the limited environ-
ment complexity, is expected. We believe that this work opens up a new re-
search direction towards self-referential and recursively self-improving systems
on the path to Artificial Super Intelligence. Finally, we discussed future recur-
sively self-improving systems based on large language models (LLMs).

Chapter 8

What’s next: Leveraging LLMs to
automate Al research

Keywords LLMs, automated science, in-context learning, self-improvement

Automating Al research with reasoning in natural language In this thesis, we
have so far focused on meta-learning approaches that operate with neural rep-
resentations to automate Al research, such as objective functions and in-context
learning. An alternative to this is leveraging human abstractions, such as nat-
ural language and code. While meta-optimization of symbolic abstractions is
challenging with conventional learning algorithms [Schmidhuber, 1987; Real
et all, 2020], recent breakthroughs with large language models (LLMs) enable
us to approach this problem in a novel way: LLMs have been pre-trained on a
vast amount of human artifacts, such as scientific articles and code. In this way,
LLMs likely already possess the same abstractions and reasoning processes that
humans employ during scientific research, thus enabling them to generate novel
Al algorithms.

In-context learning, a significant subject of this thesis, plays a crucial role in au-
tomating Al research with LLMs. Instead of using in-context learning directly as
the ‘discovered’ learning algorithm, it can serve as the inner loop of a language-
based automated scientist. In this way, language-based in-context learning cre-
ates another level of meta-learning — performing scientific research by writing
code for experimentation, reasoning about hypotheses, and improving based on
the results via in-context learning. This is achieved by storing previous insights
in the context of the LLM. Thus, it improves its scientific artifacts throughout the

123

124

Learns using G
in-context learning \Writes code Al Research
___________ Artifacts

v SRR
Gy |- 2lyses res

Meta-Learning
LLM Training VSML, SymLA,
GPICL, GLAs, et al

= “Thinking Engine”
Language
Model

In-Context Learning

Figure 8.1: In-context learning as the foundation for scientific reasoning. The
Al Scientist adds a complementary layer of learning on top of in-context learn-
ing. (A) (Meta-)training of LLMs results in general in-context learners with useful
priors about the nature of research. (B) These LLMs then serve as the thinking
engine for the (C) Al Scientist, which in-context learns from experimentation
and observation. This, in turn, feeds into new hypotheses and experiments. (D)
Such experiments may be self-referential, in that they improve the Al Scientist
or its underlying LLM. (E) Or they may involve other Al research that does not
directly improve the Al Scientist itself.

research process. Figure illustrates this concept.

The LLM-based Al Scientist Such a system could imitate the entire scientific
process of humans, from generating hypotheses, designing experiments, run-
ning them, and analyzing the results, to writing a research report — not just in
Al research but in any field of science. This is visualized in Figure 8.2. Such an
Al Scientist closely mirrors the goals of meta-learning and automated machine
learning, but with the added benefit of imitating human reasoning and process-
ing, bootstrapping from the vast amount of human knowledge stored in LLMs
and the scientific literature. Looking at automating Al research from this per-
spective, artificial curiosity [Schmidhuber, 19914d; Herrmann et al], 2022] now
becomes a key component. What ideas, hypotheses, and experiments should
the Al Scientist generate next? According to the principle of artificial curios-
ity, the Al Scientist should generate hypotheses and experiments that maximize
its learning progress (information gain). Even without explicitly modeling such
information gain, LLMs naturally encode principles of human curiosity [Zhang
et all, 20234].

How to build the Al Scientist? To develop an LLM-based Al Scientist capa-
ble of automating Al research, the model could undergo a training process that

125

Al Scientist

Idea & Hypothesis
Generation

N

Knowledge
Accumulation

| 1

Analysis

Experimentation

Knowledge Synthesis

v

Figure 8.2: The Al Scientist loop. The Al Scientist generates hypotheses, designs
experiments, runs them, and analyzes the results. It then writes a research report,
updates its stored knowledge, and generates new hypotheses.

mirrors the development of large language models (LLMs), involving prompting,
pre-training, fine-tuning, and reinforcement learning.

The initial phase would focus on prompting: existing LLMs can be directed to
perform Al research tasks by providing them with structured prompts. This stage
allows us to assess the model’s baseline capabilities in analyzing and generating
knowledge based on existing knowledge.

In the next phase, a pre-trained LLM could undergo fine-tuning on datasets con-
taining historical research project information from large repositories. These
datasets may include research processes documented in code repositories, meet-
ings, text chats, LaTeX files, experimental logs, and experiment/project tracking
software. This stage would help the model better understand the sequential
nature of research, capturing the evolution of scientific ideas and experimental
practices.

Finally, reinforcement learning (RL) could be used to optimize the model fur-
ther. Reward metrics could be derived from experimental results, with possible
metrics including standardized benchmarks (performance on a specific task),
scientist self-generated benchmarks, or LLM-generated reviews of automated re-
search reports or intermediate findings. An artificial curiosity based reward sig-
nal could also be employed, encouraging the model to explore hypotheses and
experiments that maximize its learning progress.

The Al Scientist may initially rely on and learn from human interventions while

126

its capabilities are still limited, and over time shift toward open-ended research
automation across fields of science.

Example use cases We envision an Al Scientist that can be utilized in vari-
ous ways to enhance and automate research processes. For instance, given the
experimental code and training metrics of a research project, the system can sug-
gest code modifications to stabilize, accelerate, or climb these metrics, such as
changes in the optimizer, hyperparameters, neural architecture, or regularizers.
It can also provide automated suggestions for experimental design changes at
both the conceptual and code levels, based on previous research projects in the
training distribution. Additionally, the Al Scientist can generate new ideas and
hypotheses based on prior research or the current project state, create experi-
mental prototypes from project descriptions, and automatically scale research
project prototypes to larger data and compute resources by generating code mod-
ifications informed by the evolution of trained-on research. Furthermore, it is
capable of fully automating the end-to-end research process, from research ques-
tion and hypothesis generation, through code writing and empirical evaluation,
to the completion of a research report. Humans may intervene at any point in
this process to steer the automated research toward areas of interest.

Recursive self-improvement with LLMs In our previous description of the Al
Scientist, we have mostly focused on automating the field of Al research. Why
is Al research the most important field of science to be automated by AlZ The
capabilities of the Al Scientist are directly driven by progress in Al research itself.
Even more so, the Al Scientist may directly conduct research on its own code
base and the foundation model it is built upon. Thus, initial progress on the
Al Scientist may quickly lead to positive feedback loops where the Al Scientist’s
capabilities accelerate over time. This is a form of recursive self-improvement, as
previously discussed in [Chapter 7. There are a range of possible self-referential
loops that the Al Scientist may engage in to improve itself:

1. Scientist Code & Prompting (Scaffold) The Al Scientist may improve its
own code base and prompting strategies. It may directly call LLMs to
generate such code and prompt updates, or it may develop new software
tools or machine learning models that generate such updates.

2. LLM Context (Knowledge) A major mechanism through which the Al Sci-
entist learns and improves is through the accumulation of knowledge and
feeding it back in the context of the LLM (in-context learning). This may

127

be in the form of notes, research reports, code snippets, experiment logs,
or any other artifacts that the Al Scientist generates during its research pro-
cess. The accumulation of this knowledge may lead to an increasingly
more generally capable Al Scientist.

3. LLM Parameters The Al Scientist may also directly research and imple-
ment model training algorithms that build an improved version of its un-
derlying LLM.

How is the Al Scientist related to general-purpose meta-learning? The Al
Scientist is a natural continuation of the research agenda on general-purpose
meta-learning. The previous sections in this thesis have focused on search
spaces where the learning algorithms are neural networks (such as discovering
in-context learning algorithms). While in principle this search space is Turing-
complete, operating in the same search space as human researchers enables
re-using the abstractions that humans use, potentially speeding up discovery sig-
nificantly. It also acts as a regularizer, where findings need to be compressed
into natural language, code, and mathematical formalism, further improving gen-
eralization.

Initial empirical evidence in this space While this chapter presents a concep-
tual framework, there have been some concurrent empirical studies that offer
preliminary evidence supporting the feasibility of this approach. ML-Agent-
Bench and MLE-Bench [Huang et al], 2023]; Chan et al!, 2024] demonstrate the
capabilities and limitations of current LLMs to follow the workflow of a machine
learning engineer by writing and iterating on code. Other works investigate the
automated development of new ‘LLM Agents’, i.e., control flows that call LLMs
in arbitrary ways, based on LLMs that optimize graphs [Zhuge et al], 2024] or
code [Hu et all, 2024]. Promptbreeder re-programs LLMs by changing their
prompts [Fernando et all, 2023] while leaving the control flow fixed. Lu et al!
[2024] prompted LLMs to build a proof-of-concept system that follows the scien-
tific method, writing a research report on its findings. In STOP, an evolutionary
algorithm runs on itself to optimize its own description, using LLMs as the mu-
tation operator [Zelikman et all, 2023].

128

Chapter 9

Conclusion

In this thesis, we set out to automate Al research itself. We began from the
premise that the essential ingredient of Artificial General Intelligence (and the
precondition for Artificial Super Intelligence) is not the breadth of capabilities,
but the capacity for continual self-improvement, including improvement of the
learning algorithm. If Al can reliably improve its own methods, the open-ended
process of discovery that is still driven by humans today, could be entirely auto-
mated tomorrow.

Our contributions move this goal from vision toward practice. We identified that
current meta-learning approaches excel at learning on similar problems with few
demonstrations or trials but lack the generalization capabilities to be truly useful
as replacements for human-developed learning algorithms. To this end, we have
made significant contributions to the emerging field of general-purpose meta-
learning. Through our work on MetaGenRL, VSML, SymLA, GPICL, and GLAs,
we have demonstrated the effectiveness of meta-learning in generating reinforce-
ment learning algorithms and novel general-purpose learning algorithms for su-
pervised learning. MetaGenRL [Kirsch et all, 2020b, is a gradient-
based off-policy meta-reinforcement learning algorithm that leverages a popula-
tion of DDPG-like agents to meta-learn general objective functions. Unlike re-
lated methods, the meta-learned objective functions not only generalize within
narrow task distributions but also show similar performance on entirely differ-
ent tasks while markedly outperforming REINFORCE and PPO. VSML [Kirsch
and Schmidhuber, 2021, Chapter 3] is a simple principle of weight sharing and
sparsity for meta-learning powerful in-context learning algorithms (LAs). Using
learning algorithm cloning, VSML can learn to implement the backpropagation

129

130

algorithm and its parameter updates encoded implicitly in the recurrent dynam-
ics. Furthermore, VSML can meta-learn from scratch supervised LAs that do not
explicitly rely on gradient computation and that generalize to unseen datasets.
In SymLA [Kirsch et all, 20224, Chapter 4], we identify symmetries that exist
in backpropagation-based methods for meta-RL but are missing from black-box
methods. By integrating these symmetries into neural networks, SymLA is less
prone to overfitting compared to standard in-context learners and demonstrates
first signs of generalization across domains in in-context meta-RL. Furthermore,
we explore how the task distribution, memory capacity, and other model and
training properties affect the in-context LA generalization of Transformers in su-
pervised [GPICL Kirsch et al], 2022b, Chapter 5] learning and explore general-
ization in reinforcement learning [GLAs Kirsch et all, 2023, Chapter @].

At the same time, even strong meta-learners have historically depended on
human-designed outer objectives and training loops. We proposed a research
direction that seeks to reduce these hard-coded inductive biases even further
by allowing a neural network to self-modify while distributing more computa-
tional resources to better-performing solutions. In [Kirsch and Schmid
huber, 2022D1], we investigated fundamental questions about such recursive self-
improvement and how to minimize human engineering in such systems. In ad-
dition to neural self-modification, we discussed a range of alternative substrates,
such as self-modifying code and knowledge. We posit that such approaches
form the basis for future open-ended processes of self-improvement on the path
to Artificial Super Intelligence (ASI) [Morris et al], 2023].

In Chapter 8, we discussed the concept of a meta-learning system referred to as
the ‘Al Scientist’ that automates Al research by reasoning in natural language
and using the scientific method. It operates in the same language-based search
space used by human researchers, proposing hypotheses, writing and editing
code, designing experiments, interpreting results, and generating reports. Start-
ing with partial autonomy and human oversight, such systems are poised to close
the research loop end-to-end as their competence and reliability grow. The con-
cept of recursive self-improvement, particularly when the Al Scientist performs
research on itself, suggests that the Al Scientist could rapidly enhance its own ca-
pabilities, creating a positive feedback loop. Al Scientist aligns with the broader
agenda of general-purpose meta-learning as discussed in this thesis, leveraging
human-like search spaces to accelerate discovery.

Looking forward, two ingredients appear key for a fully automated research
process, and ultimately for achieving ASI. First, systems must be able to inter-

131

act with the real world: initially through humans, digital actuators, and simu-
lators, and over time through robotics and other interfaces. In addition, gen-
eral world models [e.g. Bruce et all, 2024] that capture not only task-specific
regularities but broad structure across diverse phenomena may be trained and
used as proxies for the real world. Second, we need to scale up recursively
self-improving systems such as these discussed in [Chapter 7] and [Chapter 8, min-
imizing fixed inductive biases and human intervention. We need guardrails that
ensure such systems continue to self-improve in an open-ended manner, while
making sure these biases are not limiting automated discovery. In practice, an
effective human—Al collaboration loop (one that becomes rarer, lower-friction,
and increasingly supervisory) is a crucial stepping stone.

While our focus has been Al research, we expect the same mechanisms to ex-
tend to other sciences. Systems that automate research such as the Al Scien-
tist (Chapter 8) could be leveraged in fields such as biology, materials science,
and the social sciences. In this sense, automating Al research is both a proving
ground and a catalyst: the better we automate the process of discovery itself,
the closer we move to systems whose defining capability is sustained recursive
self-improvement; the hallmark of AGI and the precondition for ASI.

As Jurgen Schmidhuber envisioned, once we build an Al that can improve itself
better than we can, we may retire [Schmidhuber, 20T4]. Until then, the work
continues — toward systems that learn to do our research for us, and toward the
open-ended future of automated discovery that follows.

132

Appendix A

Appendix on MetaGenRL

A.1 Additional results

A.1.1 All training and test regimes

In the main text, we have shown several combinations of meta-training, and
testing environments. We will now show results for all combinations, including
the respective human engineered baselines.

Hopper On Hopper (Figure A1) we find that MetaGenRL works well, both
in terms of generalization to previously seen environments, and to unseen en-
vironments. The PPO, REINFORCE, RL?, and EPG baselines are outperformed
significantly. Regarding RL? we observe that it is only able to obtain reward
when Hopper was included during meta-training, although its performance is
generally poor. Regarding EPG, we observe some learning progress during meta-
testing on Hopper after meta-training on Cheetah and Hopper (Figure A.T4), al-
though it drops back down quickly as test-time training proceeds. In contrast,
when meta-testing on Hopper after meta-training on Cheetah and Lunar (Fig]

ure A.TB) no test-time training progress is observed at all.

Cheetah Similar results are observed in for Cheetah, where Meta-
GenRL outperforms PPO and REINFORCE significantly. On the other hand, it
can be seen that DDPG notably outperforms MetaGenRL on this environment.
It will be interesting to further study these differences in the future to improve the
expressibility of our approach. Regarding RL? and EPG only within distribution

133

134 A.1 Additional results

Testing on Hopper Testing on Hopper
3500{ —— MetaGenRL (+ Hopper) 3500 —— MetaGenRL (t Cheetah & Lunar)
MetaGenRL (t Cheetah & Hopper) MetaGenRL (f Lunar) AL A e A
—— MetaGenRL (best objective func) —— MetaGenRL (best objective func)
30001 Js 30009 __ pppe /103 fN\N\ff\W’\
—— off-policy REINFORCE (with GAE) —— off-policy REINFORCE (with GAE)
25001 — on-policy REINFORCE (with GAE) 2500 — on-policy REINFORCE (with GAE)
PPO PPO
€ 2000 —— EPG (t Cheetah & Hopper) € 2000 —— EPG (t Cheetah & Lunar) \/\J\,M\/\/w
g RL? (t Cheetah & Hopper) N g RL? (f Cheetah & Lunar) A A
§ Vi ARV SRV 5 Yy ¥ ARSI AR VY
% 1500 J\»/\ A g 1500 /\‘/\ Y
NS NS
1000 1000
500 _/_/_/_,w_/\—/\"/“ 500 //_’_—____/_/_/\JM
N - 0 =
0.0M 0.2M 0.4M 0.6M 0.8M 1.0M 0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Environment interactions Environment interactions
(a) Within distribution generalization. (b) Out of distribution generalization.

Figure A.1: Comparing the test-time training behavior of the meta-learned objec
tive functions by MetaGenRL to other (meta) reinforcement learning algorithms
on Hopper. We consider within distribution testing (a), and out of distribution
testing (b) by varying the meta-training environments (denoted by t) for the meta-
RL approaches. All runs are shown with mean and standard deviation computed
over multiple random seeds (MetaGenRL: 6 meta-train x 2 meta-test seeds, RL?:
6 meta-train x 2 meta-test seeds, EPG: 3 meta-train x 2 meta-test seeds, and 6
seeds for all others).

generalization results are available due to Cheetah having larger observations
and / or action spaces compared to Hopper and Lunar. We observe that RL?
performs similar to our earlier findings on Hopper but significantly improves
in terms of within-distribution generalization (likely due to greater overfitting, as
was consistently observed for other splits). EPG shows initially more promise on
within distribution generalization (Figure A.2d), but ends up like before.

Lunar On Lunar (Figure A.3) we find that MetaGenRL is only marginally bet-
ter compared to the REINFORCE and PPO baselines in terms of within distri-
bution generalization and worse in terms of out of distribution generalization.
Analyzing this result reveals that although many of the runs train rather well,
some get stuck during the early stages of training without or only delayed re-
covering. These outliers lead to a seemingly very large variance for MetaGenRL
in Figure’A.30. We will provide a more detailed analysis of this result in
fion A.T.7. If we focus on the best performing objective function then we observe
competitive performance to DDPG (Fig A.3d). Nonetheless, we notice that
the objective function trained on Hopper generalizes worse to Lunar, despite
our earlier result that objective functions trained on Lunar do in fact general-

135 A.1 Additional results

Testing on Cheetah Testing on Cheetah
—— MetaGenRL (t Cheetah & Lunar) —— MetaGenRL (t Hopper & Lunar)
8000 MetaGenRL (t Cheetah & Hopper) 8000 MetaGenRL (+ Lunar)
—— MetaGenRL (best objective func) —— MetaGenRL (best objective func)
—— DDPG/TD3 —— DDPG/TD3
—— off-policy REINFORCE (with GAE) —— off-policy REINFORCE (with GAE)
6000{ —— on-policy REINFORCE (with GAE) 6000 { —— on-policy REINFORCE (with GAE)
PPO PPO
c —— EPG (t Cheetah & Hopper)
2 RL2 (+ Cheetah & Hopper)
£ 4000
§
=
2000
0
0.0M 0.2M 0.4M 0.6M 0.8M 1.0M 0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Environment interactions Environment interactions
(a) Within distribution generalization. (b) Out of distribution generalization.

Figure A.2: Comparing the test-time training behavior of the meta-learned objec
tive functions by MetaGenRL to other (meta) reinforcement learning algorithms
on Cheetah. We consider within distribution testing (a), and out of distribution
testing (b) by varying the meta-training environments (denoted by t) for the meta-
RL approaches. All runs are shown with mean and standard deviation computed
over multiple random seeds (MetaGenRL: 6 meta-train x 2 meta-test seeds, RL?:
6 meta-train x 2 meta-test seeds, EPG: 3 meta-train x 2 meta-test seeds, and 6
seeds for all others).

ize well to Hopper. MetaGenRL is still able to outperform both RL? and EPG
in terms of out of distribution generalization. We do note that EPG is able to
meta-learn objective functions that are able to improve to some extent during
test time.

Comparing final scores An overview of the final scores that were obtained for
MetaGenRL in comparison to the human engineered baselines is shown in [Ta]
ble AT]. It can be seen that MetaGenRL outperforms PPO and off-/on-policy RE-
INFORCE in most configurations while DDPG with TD3 tricks remains stronger
on two of the three environments. Note that DDPG is currently not among the
representable algorithms by MetaGenRL.

A.1.2 Stability of learned objective functions

In the results presented in on Lunar we observed a seemingly large
variance for MetaGenRL that was due to outliers. Indeed, when analyzing the
individual runs meta-trained on Lunar and tested on Lunar we found that that
one of the runs converged to a local optimum early on during training and was

136 A.1 Additional results

Testing on Lunar Testing on Lunar

200 200

—— MetaGenRL (t Hopper)

MetaGenRL (Cheetah & Hopper)
—— MetaGenRL (best objective func)
—— DDPG /TD3
—— off-policy REINFORCE (with GAE) — off-policy REINFORCE (with GAE)
—— on-policy REINFORCE (with GAE) —— on-policy REINFORCE (with GAE)
-400 PPO ~400 PPO
—— EPG (f Cheetah & Lunar) —— EPG (t Cheetah & Hopper)

RL? (t Cheetah & Lunar) RL? (+ Cheetah & Hopper)

S WAV |

0.0M 0.2M 0.4M 0.6M 0.8M 1.0M 0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Environment interactions Environment interactions

—— MetaGenRL (t Cheetah & Lunar)
= MetaGenRL (t Lunar)

-200 -‘ —— MetaGenRL (best objective func) -200
—— DDPG /TD3

(a) Within distribution generalization. (b) Out of distribution generalization.

Figure A.3: Comparing the test-time training behavior of the meta-learned objec
tive functions by MetaGenRL to other (meta) reinforcement learning algorithms
on Lunar. We consider within distribution testing (a), and out of distribution test-
ing (b) by varying the meta-training environments (denoted by 1) for the meta-RL
approaches. All runs are shown with mean and standard deviation computed
over multiple random seeds (MetaGenRL: 6 meta-train x 2 meta-test seeds, RL?:
6 meta-train x 2 meta-test seeds, EPG: 3 meta-train x 2 meta-test seeds, and 6
seeds for all others).

unable to recover from this afterwards. On the other hand, we also observed
that runs can be ‘stuck’ for a long time to then make very fast learning progress.
It suggests that the objective function may sometimes experience difficulties in
providing meaningful updates to the policy parameters during the early stages
of training.

We have further analyzed this issue by evaluating one of the objective func
tions at several intervals throughout meta-training in Figure A-4. From the meta-
training curve (bottom) it can be seen that meta-training in Lunar converges very
early. This means that from then on, updates to the objective function will be
based on mostly converged policies. As the test-time plots show, these addi-
tional updates appear to negatively affect test-time performance. We hypoth-
esize that the objective function essentially ‘forgets’ about the early stages of
training a randomly initialized agent, by only incorporating information about
good performing agents. A possible solution to this problem would be to keep
older policies in the meta-training agent population or use early stopping.

Finally, if we exclude four random seeds (of 12), we indeed find a significant
reduction in the variance (and increase in the mean) of the results observed for

137 A.1 Additional results

Table A.1: Agent mean return across multiple seeds (MetaGenRL: 6 meta-train
x 2 meta-test seeds, and 6 seeds for all others) for meta-test training on previ-
ously seen environments (cyan) and on unseen (different) environments (brown)
compared to human engineered baselines.

Training (below) / Test (right) Cheetah Hopper Lunar
MetaGenRL (20 agents) Cheetah & Hopper 2185 2433 18
Cheetah & Lunar 2551 2363 258
Hopper & Lunar 4160 2966 146
Hopper 3646 2937 -62
Lunar 4366 2717 244
MetaGenRL (40 agents) Lunar & Hopper & Walker & Ant 3106 2869 201
Cheetah & Lunar & Walker & Ant 3331 2452 -71
Cheetah & Hopper & Walker & Ant | 2541 2345 -148
PPO - 1455 1894 187
DDPG /TD3 - 8315 2718 288
off-policy REINFORCE (GAE) - -88 1804 168
- 38 565 120

on-policy REINFORCE (GAE)

Testing, after 55K steps Testing, after 155K steps Testing, after 454K steps 00 Testing, after 654K steps

—— Meta-Training with 20 Agents on Lunar

Mean return of agents

200K 400K 600K 800K 1000K
Environment interactions per agent in the training population

Figure A.4: Meta-training with 20 agents on Lunarlander. We meta-test the
objective function at different stages in training on the same environment.

MetaGenRL (see Figure A.5).

A.1.3 Ablation of agent population size and unique environ-
ments

In our experiments we have used a population of 20 agents during meta-training
to ensure diversity in the conditions under which the objective function needs
to optimize. The size of this population is a crucial parameter for a stable meta-
optimization. Indeed, in it can be seen that meta-training becomes
increasingly unstable as the number of agents in the population decreases.

138 A.1 Additional results

Testing on Lunar Testing on Lunar
400 400
—— MetaGenRL (f Hopper)
MetaGenRL (f Cheetah & Lunar)
3001 —— MetaGenRL (t Cheetah & Hopper) 300
—— MetaGenRL (f Lunar)
200 200
c c
S 100 5 100
e e
c c
g o g o
= =
-100 -100
—— MetaGenRL (t Hopper)
_200 —200 MetaGenRL (f Cheetah & Lunar)
—— MetaGenRL (t Cheetah & Hopper)
l —— MetaGenRL (t Lunar)
-300 -300
0.0M 0.2M 0.4M 0.6M 0.8M 1.0M 0.0M 0.2M 0.4M 0.6M 0.8M 1.0M

Environment interactions Environment interactions

Figure A.5: The left plot shows all 12 random seeds on the meta-test environ-
ment Lunar while the right has the 4 worst random seeds removed. The variance
is now reduced significantly.

Using a similar argument, one would expect to gain from increasing the number
of distinct environments (or agents) during meta-training. In order to verify this,
we have evaluated two additional settings: Meta-training on Cheetah & Lunar &
Walker & Ant with 20 and 40 agents respectively. shows the result of
meta-testing on Hopper for these experiments (also see the final results reported
for 40 agents in [Table A.T). Unexpectedly, we find that increasing the number
of distinct environments does not yield a significant improvement and, in fact,
sometimes even decrease performance. One possibility is that this is due to the
simple form of the objective function under consideration, which has no access
to the environment observations to efficiently distinguish between them. An-
other possibility is that MetaGenRL's hyperparameters require additional tuning
in order to be compatible with these setups.

139

A.1 Additional results

Subset of agents meta-training on Lunar

300
3
5
g 200
5
§ 100
13
§ 0
=
2 -100
K [
2004 . NN L
-2507] - =
-500
=750 Y M A A Ak
WAAAMA A AAMAAM A M)A AW,
_1000 —— Cheetah & Lunar - 1 agent
Cheetah & Lunar - 3 agents
_1250 —— Cheetah & Lunar - 10 agents
—— Cheetah & Lunar - 20 agents
~1500
0.0 0.1M 0.2M 0.3M 0.4M 0.5M 0.6M
step

Figure A.6: Stable meta-training re-
quires a large population size of at
least 20 agents. Meta-training per-
formance is shown for a single run
with the mean and standard deviation
across the agent population.

Testing on Hopper

3500{ —— MetaGenRL (t Cheetah & Lunar)
MetaGenRL (f Lunar)

—— MetaGenRL (+ CLWA-40)
—— MetaGenRL (+ CLWA-20)

3000

2500

2000

Mean return

1500

1000

500

0.0M 0.2m 0.4M 0.6M 0.8M 1.0M
Environment interactions

Figure A.7: Meta-training on Cheetah,
Lunar, Walker, and Ant with 20 or
40 agents; meta-testing on the out-of-
distribution Hopper environment. We
compare to previous VSML configura-
tions.

140 A.2 Experiment details

A.2 Experiment details

In the following we describe all experimental details regarding the architectures
used, meta-training, hyperparameters, and baselines. The code to reproduce our
experiments is available at http://louiskirsch.com/code/metagenrl.

A.2.1 Neural objective function architecture

Neural Architecture In this work we use an LSTM to implement the objective
function (Figure 2.2). The LSTM runs backwards in time over the state, action,
and reward tuples that were encountered during the trajectory 7 under consid-
eration. At each step ¢ the LSTM receives as input the reward r;, value estimates
of the current and previous state V;, V., the current timestep ¢ and finally the
action that was taken at the current timestep a, in addition to the action as de-
termined by the current policy 7,(s;). The actions are first processed by one
dimensional convolutional layers striding over the action dimension followed
by a reduction to the mean. This allows for different action sizes between envi-
ronments. Let A(®) ¢ R'*P be the action from the replay buffer, A™ ¢ R*P
be the action predicted by the policy, and W € R**¥ a learnable matrix corre-
sponding to N outgoing units, then the actions are transformed by
1 D
5 2 (AP AW, (A1)

=1

where [a, b] is a concatenation of a and b along the first axis. This corresponds to
a convolution with kernel size 1 and stride 1. Further transformations with non-
linearities can be added after applying W, if necessary. We found it helpful (but
not strictly necessary) to use RelLU activations for half of the units and square
activations for the other half.

At each time-step the LSTM outputs a scalar value [/; (bounded between —7 and
n using a scaled tanh activation), which are summed to obtain the value of the
neural objective function. Differentiating this value with respect to the policy
parameters ¢ then yields gradients that can be used to improve 7s. We only
allow gradients to flow backwards through 7,(s;) to ¢. This implementation is
closely related to the functional form of a REINFORCE [Williams, [1992] estimator
using the generalized advantage estimation [Schulman et al], 20T50].

All feed-forward networks (critic and policy) use ReLU activations and layer nor-
malization [Ba etall], 20T6b]. The LSTM uses tanh activations for cell and hidden

http://louiskirsch.com/code/metagenrl

141 A.2 Experiment details

state transformations, sigmoid activations for the gates. The input time ¢ is nor-
malized between 0 at the beginning of the episode and 1 at the final transition.

Any other hyper-parameters can be seen in [Table A.2.

Extensibility The expressability of the objective function can be further in-
creased through several means. One possibility is to add the entire sequence
of state observations o;.7 to its inputs, or by introducing a bi-directional LSTM.
Secondly, additional information about the policy (such as the hidden state of
a recurrent policy) can be provided to L. Although not explored in this work,
this would in principle allow one to learn an objective that encourages certain
representations to emerge, e.g. a predictive representation about future observa-
tions, akin to a world model [Schmidhuber, [T990; Ha and Schmidhuber, 2018;
Racaniére et all, 20T7]. In turn, these could create pressure to adapt the pol-
icy’s actions to explore unknown dynamics in the environment [Schmidhuber,
1991¢, 1990; Houthooft et al/, 2016; Pathak et all, 2017].

A.2.2 Meta training

Annealing with DDPG At the beginning of meta-training (learning L,), the
objective function is randomly initialized and thus does not make sensible up-
dates to the policies. This can lead to irreversibly breaking the policies early
during training. Our current implementation circumvents this issue by linearly
annealing VL, the first 10k timesteps (~ 2% of all timesteps) with DDPG
Vo Qo(st, my(s¢)). Preliminary experiments suggested that an exponential learn-
ing rate schedule on the gradient of V4L, for the first 10k steps can replace
the annealing with DDPG. The learning rate anneals exponentially between a
learning rate of zero and 1e-3. However, in some rare cases this may still lead
to unsuccessful training runs, and thus we have omitted this approach from the
present work.

Standard training During training, the critic is updated twice as many times as
the policy and objective function, similar to TD3 [Fujimoto et all, 20T8]. One
gradient update with data sampled from the replay buffer is applied for every
timestep collected from the environment. The gradient with respect to ¢ in
is combined with ¢ using a fixed learning rate in the standard
way, all other parameter updates use Adam [Kingma and Ba, 2014] with the
default parameters. Any other hyper-parameters can be seen in and

Table A.3.

142 A.2 Experiment details

Using additional gradient steps In our experiments (Figure 2.5.2) we analyzed
the effect of applying multiple gradient updates to the policy using L., before ap-
plying the critic to compute second-order gradients with respect to the objective
function parameters. For two updates, this gives

an@(Sta 7T¢T(St)) with ng = Qb, - vqﬁ’Loc(Tla IL’<¢I>, V)
and ¢/ - (rb - V¢La(7—27 SL’<¢), V)
and can be extended to more than two correspondingly. Additionally, we use
disjoint mini batches of data 7: 7, 7. When updating the policy using VL,
we continue to use only a single gradient step.

(A.2)

A.2.3 Baselines

RL? The implementation for RL? mimics the paper by Duan et al. [Duan et al],
2016]. However, we were unable to achieve good results with TRPO [Schulman
etal!, 2015a] on the MuJoCo environments and thus used PPO [Schulman et all,
2017] instead. The PPO hyperparameters and implementation are taken from
rllib [Liang et al], 2018]. Our implementation uses an LSTM with 64 units and
does not reset the state of the LSTM for two episodes in sequence. Resetting
after additional episodes were given did not improve training results. Different
action and observation dimensionalities across environments were handled by
using an environment wrapper that pads both with zeros appropriately.

EPG We use the official EPG code base https://github.com/openai/EPG
from the original paper [Houthooft et al], 2018]. The hyperparameters are taken
from the paper, V' = 64 noise vectors, an update frequency of M = 64, and
128 updates for every inner loop, resulting in an inner loop length of 8196 steps.
During meta-test training, we run with the same update frequency for a total of
1 million steps.

PPO & On-Policy REINFORCE with GAE We use the tuned imple-
mentations from https://spinningup.openai.com/en/latest/spinningup/
bench.html which include a GAE [Schulman et al!, 2015b] baseline.

Off-Policy Reinforce with GAE The implementation is equivalent to VSML ex-
cept that the objective function is fixed to be the REINFORCE estimator with a
GAE [Schulman et al], 20T5b] baseline. Thus, experience is sampled from a re-
play buffer. We have also experimented with an importance weighted unbiased
estimator but this resulted in poor performance.

https://github.com/openai/EPG
https://spinningup.openai.com/en/latest/spinningup/bench.html
https://spinningup.openai.com/en/latest/spinningup/bench.html

143 A.2 Experiment details

Table A.3: Training hyperparame-

ters

Table A.2: Architecture hyperpa- Parameter | Value
rameters

Truncated episode length 20

Global norm gradient clipping 1.0

Parameter ‘ Value Critic learning rate \; Te-3

Critic number of layers 3 Policy learning rate A, Te-3

Critic number of units 350 Second order learning rate A3 le-3

Policy number of layers 3 Obj. func. learning rate A4 Te-3

Policy number of units 350 Critic noise 0.2

Objective func LSTM units 32 Critic noise clip 0.5

Objective func action conv layers 3 Target network update speed 0.005

Objective func action conv filters 32 Discount factor 0.99

Error bound 7 1000 Batch size 100

Random exploration timesteps | 10000

Policy gaussian noise std 0.1

Timesteps per agent ™

DDPG Our implementation is based on https://spinningup.openai.com/
en/latest/spinningup/bench.html and uses the same TD3 tricks [Fujimoto
et al], 2018] and hyperparameters (where applicable) that VSML uses.

https://spinningup.openai.com/en/latest/spinningup/bench.html
https://spinningup.openai.com/en/latest/spinningup/bench.html

144 A.2 Experiment details

Appendix B

Appendix on VSML

B.1 Derivations

Theorem B.1.1. The weight matrices W and C' used to compute VSML RNNs
from can be expressed as a standard RNN with weight matrix W

such that

Sabj < O(Z SabiWi]’ + Z Scaicij) (B.1)
= U(Z Scdichiabj)- (B.2)
c,d,i

The weight matrix W has entries of zero and shared entries given by
tion 3.6

Cij, ifd=aNn(d#bVc#a).
- Wi, if d ANd=bAc=a. -
Wediav; = ’ l 7a c=a (3.6 revisited)
Cij + Wiy, ifd=aNd=bAc=a.
0, otherwise.
Proof. We rearrange W into two separate weight matrices
Z Scdichz’abj (B3)
c,dyi
= Z ScdiAcdiabj + Z Scdi(W - A)cdiabj- (B4)
c,dyi c,dyi

145

146 B.1 Derivations

Then assuming A 4iap; = (d = b)(c = a)W;;, where z = y equals 1 iff x and y
are equal and 0 otherwise, it holds that

Z SediAcdiabj = Z SapiWij- (B.5)

c,d,i

Further, assuming (W — A).giap; = (d = a)C;; we obtain

Z Sedi(W — A)cdiab = Z ScaiCij.- (B.6)

c,d,i

Finally, solving both conditions for W gives

chiabj = (d = G)Cij + (d = b)(C = a)mj, (B7)

which we rewrite in tabular notation:

Cij, ifd=aNn(d#bVc#a).
~ Wi, ifd4aNd=bAc=a.
Wediabj = § " e (B.8)
Cij + Wi, ifd=and=bAc=a.
0, otherwise.
Thus, holds and any weight matrices W and C' can be expressed

by a single weight matrix . N

147 B.2 Additional experiments

Absolute prediction error

3 0.0064
1.00 Target
—— Prediction
0.75 R 0.0056
0.50 0.0048
1
0.25 0.0040
. s O 0.0032
-0.25 0.0024
-1
-0.50 0.0016
— -2
0.75 0.0008
-1.00
-3 0.0000
-3 -2 -1 0 1 2 3

-3 -2 -1 0 1 2 3
Input Input

Prediction / Target
o
°
S
Weight

Figure B.1: We are optimizing VSML RNNs to implement neural forward com-
putation such that for different inputs and weights a tanh-activated multiplicative
interaction is produced (left), with different lines for different w. These neural
dynamics are not exactly matched everywhere (right), but the error is relatively
small.

B.2 Additional experiments

B.2.1 Learning algorithm cloning

VSML RNNs can implement neural forward computation In this experiment,
we optimize the VSML RNN to compute y = tanh(z)w. (left) shows
how for different inputs x and weights w the LSTM produces the correct target
value, including the multiplicative interaction. The heat-map (right) shows that
low prediction errors are produced but the target dynamics are not perfectly
matched. We repeat these LSTMs in line with to obtain an ‘emer-
gent’ neural network.

Learning Algorithm Cloning Curriculum In principle, backpropagation can
be simply cloned on random data such that forward computation implements
multiplicative activation-weight interaction and backward computation passes
an error signal back given previous forward activations. If the previous forward
activations are fed as an input one could stack VSML RNNs that implement
these two operations to mimic arbitrarily deep NNs. By purely training on ran-
dom data and unrolling for one step, we can successfully learn on MNIST and
Fashion MNIST in the shallow setting. For deeper models, in practice, cloning
errors accumulate and input and state distributions shift. To achieve learning in
deeper networks we have used a curriculum on random and MNIST data. We
first match the forward activations, backward errors, and weight updates for a

148 B.2 Additional experiments

Learning on MNIST Learning on Fashion MNIST Learning on MNIST Learning on Fashion MNIST
3 (within distribution) (out of distribution) 30 (within distribution) (out of distribution)
—— Cloned BP . —— Cloned BP
2.5 1 —— Regular SGD 2.5 1 7 —— Regular SGD
0
820 1 820
o o
£15 1 £ 1.5
E £
T t T
= Lo 1 = 1.0
0.5 1 0.5 4
0.0 T T T r r r 0.0 T T T T T T
10k 20k 30k 40k Ok 10k 20k 30k 40k ok 10k 20k 30k 40k Ok 10k 20k 30k 40k
Gradient step Gradient step Gradient step Gradient step
Learning on MNIST Learning on Fashion MNIST Learning on MNIST Learning on Fashion MNIST
10 (within distribution) (out of distribution) 10 (within distribution) (out of distribution)
208 -M >08
3 @
5 5
506 R 506
® ®
o j=2]
£ 0.4 1 £04
£ £
T T
0.2 4 —— Cloned BP =024 4 —— Cloned BP
—— Regular SGD —— Regular SGD
0.0 T T T T T T 0.0 T T T T T T
0k 10k 20k 30k 40k Ok 10k 20k 30k 40k 0k 10k 20k 30k 40k Ok 10k 20k 30k 40k
Gradient step Gradient step Gradient step Gradient step
(a) Shallow network arrangement. (b) Deep (2 layer) network arrangement.

Figure B.2: Additional experiments with VSML RNNs implementing backprop-
agation. Standard deviations are over 6 seeds.

shallow network. Next, we use a deep network and provide intermediate errors
by a ground truth network. Finally, we remove intermediate errors and use the
RNN’s intermediate predictions that are now close to the ground truth. The final
VSML RNN can be used to train both shallow (Figure B.23) and deep configura-
tions (Fig B.2D0).

B.2.2 Meta learning from scratch

Meta testing learning curves & sample efficiency In we only
showed accuracies after 2k steps. provides the entire meta test train-
ing trajectories for a subset of all configurations. Furthermore, in we
show the cumulative accuracy on the first 100 examples. From both figures, it
is evident that learning at the beginning is accelerated compared to SGD with

Adam. Also compare with our introspection from Section 3.5

Ablation: Projection augmentations In the main text (Figure 3.8) we have ran-
domly projected inputs during VSML meta training. When not randomly project-
ing inputs (Figure B.5), generalization of VSML is slightly reduced. In
we have enabled these augmentations for all methods, including the baselines.
While VSML benefits from the augmentations, the in-context RNN, Hebbian fast
weights, and external memory baselines do not increase their generalization sig-
nificantly with those enabled. In we show meta test training curves

149 B.2 Additional experiments

Meta Testing on MNIST Meta Testing on Fashion MNIST Meta Testing on EMNIST
308 D e 05 e————
£ 0.6 —_— 04 T ————
506 ! =t
@ g
0.3
N 0.4
g 0.4 algorithm
L] —— ADAM shallow 0.2
2 0.2
£02 ADAM deep 0.1
3 VSMLRNN :
0.0 0.0 0.0
Meta Testing on Kuzushiji MNIST Meta Testing on Random Meta Testing on Sum Sign

o
o

o
IS

o
N

Cumulative accuracy

o
15

0.0 0
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Total examples seen Total examples seen Total examples seen

Figure B.3: Meta testing learning curves. All 6 meta test tasks are unseen. VSML
RNN has been meta trained on MNIST, Fashion MNIST, EMNIST, KMNIST, and
Random, excluding the respective dataset that is being meta tested on. Standard
deviations are over 32 seeds.

for both the augmented as well as non-augmented case.

Meta Testing on MNIST Meta Testing on Fashion MNIST

Introspect longer meta test train- ot drsibution) {out of digtribution

ing run Similarly to Figure 3.9, we goef

look at how VSML RNNs learned ﬁ 7
to learn after meta-training on the ..

MNIST dataset. In this case, we meta- 0 w0 s w0 s w0 w0 a0

Total examples seen Total examples seen
test for 100 steps by sampling from the

full MNIST dataset in with- fFigure B.7: On the MNIST meta train-
out repeating digits. Compared to the N8 example frqm we PlOt
the effect of adding the random projec-

there is a larger variety of possible in- ion augmentation to VSML and the in-
puts. Nevertheless, we observe that CONtext RNN. The.Fa.shlo.n MNIST per-
VSML RNNS still associate inputs with formance (out of distribution) is slightly

their label rather quickly compared to imp‘roved for VSML 'wh'ile' the effect on
SGD. the in-context RNN is limited.

— vsML
In-context RNN

—— Backprop + SGD

—— Backprop + Adam
Augmented

— False

-=- True

previous setup, learning is slower as

Omniglot In this work, we have focused on the objective of meta-learning a
general-purpose learning algorithm. Differently from most contemporary meta-
learning approaches, we tested the discovered learning algorithm on signifi-
cantly different datasets to assess its generalization capabilities. These gener-
alization capabilities may affect the performance on standard few-shot bench-
marks, such as Omniglot. In this section, we assess how VSML performs on
those datasets where the tasks at meta-test time are similar to those during meta-

150 B.2 Additional experiments

Meta Testing on MNIST Meta Testing on Fashion MNIST Meta Testing on EMNIST

MNIST =

Fashion MNIST E
EMNIST E
Kuzushiji MNIST E

i

2 E
]
K Random [F - VSML
g == In-Context RNN
o Leave out MNIST g === HebbianFW
3 E -
£ Leave out Fashion MNIST —— E pl=— = FWMemory
= - mmm ADAM shallow
il Leave out EMNIST —_— = E == ADAM deep
2 — — ——
= Leave out Kuzushiji MNIST — = —

Leave out Random —_— 4+ —ad

All datasets B - [——— .
N T - =
Meta Testing on Kuzushiji MNIST Meta Testing on Random Meta Testing on Sum Sign

MNIST E
Fashion MNIST E
EMNIST E

Kuzushiji MNIST =

Random =

Leave out MNIST —=

Leave out Fashion MNIST —

Leave out EMNIST —

Leave out Kuzushiji MNIST E

Leave out Random Sl

Meta Training datasets

N R L |
m m“"n Mr - r!_ '

All datasets ==

N/A -1 - =
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Accuracy of first 100 examples Accuracy of first 100 examples Accuracy of first 100 examples

Figure B.4: Online learning on various datasets. Cumulative accuracy in % after
having seen 100 training examples evaluated after each prediction starting with
random states (VSML, in-context RNN, HebbianFW, FWMemory) or random
parameters (SGD). Standard deviations are over 32 meta test training runs. Meta
testing is done on the official test set of each dataset. Meta training is on subsets
of datasets excluding the Sum Sign dataset. Unseen tasks, most relevant from a
general-purpose LA perspective, are opaque.

151 B.2 Additional experiments

Meta Testing on MNIST Meta Testing on Fashion MNIST Meta Testing on EMNIST
MNIST = l ﬁ
Fashion MNIST . =5 l
EMNIST F ' - - .
jul Kuzushiji MNIST I - ‘
o
8 Random [, B E - VSML
3 F . — == In-context RNN
Leave out MNIST il | — i
g‘ . mmm HebbianFW
£ Leave out Fashion MNIST 3 _ - m= FWMemory
c mmm ADAM shallow
il Leave out EMNIST -7 E _ ' mmm ADAM deep
o
= | eave out Kuzushiji MNIST i =l — Il
Leave out Random =il il fe— _
Al datasets ‘il = | - ~
nya T — — I
Meta Testing on Kuzushiji MNIST Meta Testing on Random Meta Testing on Sum Sign
wnisT [E E
Fashion MNIST [E E
emnist [E e
g Kuzushiji MNIST — E |y
8 Random |y
i = = —
© -
o Leave out MNIST 4 B :
£) = =
£ i - - —
S Leave out Fashion MNIST 3 B ey
© Leave out EMNIST = 1 - E
; i = =i
= Leave out Kuzushiji MNIST l = E
Leave out Random - - _ E_— :
All datasets - = e
/e . | —
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Accuracy of first 2k examples Accuracy of first 2k examples Accuracy of first 2k examples

Figure B.5: Same as figure and but with accuracies after

having seen 2k training examples and no random projections for all methods
during meta training.

152 B.2 Additional experiments

Meta Testing on MNIST Meta Testing on Fashion MNIST Meta Testing on EMNIST
- ——
MNIST = = 3 - VSML
= - In-context RNN!
Fashion MNIST | = —_ - : mmm HebbianFW
EMNIST S 3 = === FWMemory
ol 3 === ADAM shallow
. -
Kuzushiji MNIST E = == ADAM deep
—— ——
Random e =
Leave out MNIST 8=

Leave out Fashion MNIST e e E

Leave out EMNIST

Meta Training datasets

Leave out Kuzushiji MNIST

Leave out Random

Ty

All datasets
N/A
Meta Testing on Kuzushiji MNIST Meta Testing on Random Meta Testing on Sum Sign
MNIST ‘— = =
FashiontnisT [= =
enst B F F
] Kuzushiji MNIST —— =
corcon = = e
= = | — —=
g\ Leave out MNIST e e — — = :,
:g Leave out Fashion MNIST e e T = i
= -
g Leave out EMNIST T ——— il ﬁ
= Leave out Kuzushiji MNIST E_ = =
Leave out Random e I E il
All datasets =~ —— il = —

ya T e

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Accuracy of first 2k examples Accuracy of first 2k examples Accuracy of first 2k examples

Figure B.6: Same as figure and but with accuracies after

having seen 2k training examples and random projections for all methods in-
cluding baselines during meta training.

Figure B.8: Introspection of how output probabilities change after observing
an input and its error at the output units when meta testing on the full MNIST
dataset. We highlight the input class [as well as the predicted class () for 100
examples in sequence. The top plot shows the VSML RNN quickly associating
the input images with the right label, generalizing to future inputs. The bottom
plot shows the same dataset processed by SGD with Adam which learns signifi-
cantly slower by following the gradient.

153 B.2 Additional experiments

training.

On Omniglot, our experimental set-
ting corresponds to the common 5- Few-shot learning on Omniglot

way, 1-shot setting [Miconi et all, MetaRNN (1-shot
2018]: In each episode, we select ..., eromien

5 random classes, sample 1 instance ADAM (1-shot)
each, and show it to the network AOAM (15.5700
with the label and prediction error.
Then, we sample a new random test
instance from one of the 5 classes
and meta-train to minimize the cross-
entropy on that example. At meta- Figure B.9: VSML on the Omniglot
test time we use unseen alphabets i cat

(classes) from the test set and report

the accuracy of the test instance across

100 episodes.

VSML (1-shot)

VSML (19-shot)

0.0 0.2 0.4 0.6 0.8 1.0
Accuracy of test example

The results (Figure B.9) nicely demonstrate how common baselines such as the
in-context RNN [Hochreiter et al], 2001; Duan et al!, 2016; Wang et al!, 2016]
or a in-context RNN with external memory [Schlag et all, 202Tb] work well in
an Omniglot setting, yet fail when the gap increases between meta train and
meta test, thus requiring stronger generalization (Figure 3.6, Figure 3.8). In
contrast, VSML generalizes well to unseen datasets, e.g. Fashion MNIST, al-
though it learns more slowly on Omniglot. Finally, these new results demon-
strate how VSML learns significantly faster on Omniglot compared to SGD with
Adam, thus highlighting the benefits of the meta-learning approach adopted in
this work.

Short horizon bias In this work, we

have observed that VSML can be sig- Mot drbutiony o (out of aiatribution)
nificantly more sample efficient com- T
pared to backpropagation with gradi-
ent descent, in particular for the first
few examples. The longer we un-
roll the VSML RNNs, the smaller this e e
gap becomes. In we run Total examples seen Total examples seen
VSML for 12,000 examples (24,000 Figure B.10: Short horizon bias.
RNN ticks). From this plot, it is ev-

ident that at some point gradient de-

-

o
3

W

o
o

°
IS

— VSML

—— In-context RNN
—— Backprop + SGD
—— Backprop + Adam

Cumulative accuracy

°
N}

154 B.2 Additional experiments

Meta Testing on MNIST Meta Testing on Fashion MNIST Meta Testing on EMNIST
MNiST E I e = TvLrC

2 Fashion MNIST e —— - I o= |vamL RN
@ EMNIST e — =
kS Kuzushiji MNIST - — e —— —
=S Random IS — —
£ Leave out MNIST EEEE— = =
‘S Leave out Fashion MNIST . I k.
: Leave out EMNIST g A I
% Leave out Kuzushiji MNIST E - 5
= Leave out Random E E =

All datasets 5 e B

Meta Testing on Kuzushiji MNIST Meta Testing on Random Meta Testing on Sum Sign
MNiST - I —— e —

2 Fashion MNIST - — Iy—— | —
& EMNIST — s @000 =
3 Kuzushiji MNIST = I S ——
> Random I | = —
£ Leave out MNIST e |
‘@ Leave out Fashion MNIST - 1 S
= Leave out EMNIST = |
 Leave out Kuzushiji MNIST EEEG_——— | =
= Leave out Random E I —

All datasets = t |

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Accuracy of first 2k examples Accuracy of first 2k examples Accuracy of first 2k examples

Figure B.11: Convolutions are competitive to the standard fully connected setup.

scent overtakes VSML in terms of learning progress. We call this phenomenon
the short horizon bias, where meta-test training is fast in the beginning but flat-
tens out at some horizon. In the current version of VSML we only meta-optimize
the RNN for 500 examples (marked by the vertical dashed line) starting with
a random initialization, not explicitly optimizing learning beyond that point,
resulting in this bias. In future work, we will investigate methods to circum-
vent this bias, for example by resuming from previous states (learning progress)
similar to a persistent population in previous meta-learning work [Kirsch et all,
2020b].

Convolutional Neural Networks VSML’s sub-RNNs can not only be arranged
to fully connected layers, but also convolutions. For this experiment, we have
implemented a convolutional neural network (CNN) version of VSML. This is
done by replacing each weight in the kernel with a multi-dimensional RNN
state and replacing the kernel multiplications with VSML sub-RNNs. We used
a convolutional layer with kernel size 3, stride 2, and 8 channels, followed by a
dense layer. On our existing datasets, it performs similarly to the fully connected

architecture, as can be seen in Figure B.TT.

We also applied our CNN variant to CIFAR10. Note that in this work we are
interested in the online learning setting (similar to the one of in-context RNNs).
This is a challenging problem on which gradient descent with backpropagation
also struggles. Many consecutive examples (> 107 steps) are required for learn-
ing. Online performance is generally lower than in the batched setting, which
we do not explore here. When meta-training on CIFAR10 (Figure B.T2) we ob-
serve that meta-test time learning on CIFAR is initially faster compared to SGD

155 B.3 Other training details

Meta Testing on CIFAR10 Meta Testing on Fashion MNIST

1o (within distribution) (out of distribution)
o —— VSML, with convs —— VSML, with convs
8 0.8 SGD + Adam, with convs i SGD + Adam, with convs
5 1 1
: | |
© 0.6 1 1
o 1)/"'/_
E : !
Soe ‘ / :
= 1 1
5 0.2+ /E’_—, . i
= 1 { 1
| l l

0 500 1000 1500 2000 0 500 1000 1500 2000
Total examples seen Total examples seen

Figure B.12: Meta Training on CIFAR10 with a CNN version of VSML.

while still generalizing to Fashion MNIST. On the other hand, with a sufficiently
large meta-training distribution, we would hope to see a similar generalization
to CIFAR10 when CIFAR10 is unseen. As is visible in both plots, the learning
speed decreases at some point. This is probably due to the current short-horizon
bias as discussed in the previous paragraph. Future improvements are necessary
to further scale VSML to harder learning problems.

B.3 Other training details

LSTM implementation We implement the VSML RNN using A - B LSTMs with
forward and backward messages as described in Equation 3.7. Each LSTM ab at
layer k is updated by

200G frsmm(zl) B, WP). (B.9)

ab »'""ab a

The functions f5; and fs are a linear projection to outputs of size N’ = 8 and
N" = 8 respectively. The state size is given by N = 64 for LA cloning and
N = 16 for meta-learning from scratch. A" and B%) are fixed according to the
input / output size of the data set, and others are freely chosen as described in
the respective experiment. We found that averaging messages instead of sum-
ming them, m\" .= T D fa(s% Dy and I = =TT D Fi (s,
improves the stability of meta-training.

Source code is available at http://louiskirsch.com/code/vsml.

http://louiskirsch.com/code/vsml

156 B.3 Other training details

B.3.1 Learning algorithm cloning

General training remarks During the forward evaluation of layers 1,..., K
we freeze the LSTM state. During the backward pass, we only retain two state
dimensions that correspond to the weight and the bias. We also zero all other
LSTM input dimensions in 7 and 2 except those that encode the input z and
the error e. We maintain a buffer of VSML RNN states from which we sample
a batch during LA cloning and append one of the new states to the buffer. This
ensures diversity across possible VSML RNN states during LA cloning.

Batching for VSML RNNs In we optimize a VSML RNN to imple-
ment backpropagation. To stabilize learning at meta-test time, we run the RNN
on multiple data points (batch size 64) and then average their states correspond-
ing to w and b as an analogue to batching in standard gradient descent.

Stability during meta testing To prevent exploding states during meta-testing,
we also clip the LSTM state between —4 and 4.

Bounded states in LSTMs In LSTMs the hidden state is bounded between
(—=1,1). For learning algorithm cloning, we would like to support weights and
biases beyond this range. This can be circumvented by choosing a constant,
here 4, by which we scale w and b down to store them in the context state. This
is only relevant during learning algorithm cloning.

B.3.2 Meta learning from scratch

Hyperparameter search strategy The VSML hyperparameters were searched
using wandb'’s [Biewald, 2020] Bayesian search during development. Parame-
ters that lead to stable meta-learning on MNIST were chosen. The final param-
eters were not further tuned, and doing so may lead to additional performance
gains. For the in-context RNN we picked parameters that matched VSML RNN
as much as possible. For our SGD and SGD with Adam baselines, we performed
a grid search on the learning rate on MNIST to find the best learning rates.

Meta Training Meta training is done across 128 GPUs using ES as proposed
by OpenAl [Salimans et al], 2017] for a total of 10k steps. We use a population
size of 1024, each population member is evaluated on one trajectory of 500
online examples. We use noise with a fixed standard deviation of 0.05. To apply
the estimated gradient, we use Adam with a learning rate of 0.025 and betas

157 B.3 Other training details

set to 0.9 and 0.999. We have run similar experiments (where GPU memory
is sufficient) with distributed gradient descent on 8 GPUs, which led to less
stable training but qualitatively similar results with appropriate early stopping
and gradient clipping.

VSML RNN architecture Each sub-RNN has a state size of N = 16 and the
messages are sized N’ = N” = 8. We only use a single layer between the input
and prediction, thus A equals the flattened input image dimension and B = 10
for the predicted logits. The outputs are squashed between +100 using tanh.
We run this layer two ticks per input. The states are initialized randomly from
independent standard normals.

SGD baseline architecture and learning rate The deep SGD baseline uses a
hidden layer of size 160, resulting in approximately 125k parameters on MNIST
to match the number of state dimensions of the VSML RNN. We use a tanh
activation function to match the LSTM setup. The tuned learning rate used for
vanilla SGD is 1072 and 102 for Adam.

in-context RNN baseline We use an LSTM hidden size of 16 and an input size
of |image| + |error| where |error| corresponds to the output size. Inputs are
padded to be equal size across all meta-training datasets. This results in about
100k to 150k parameters.

Hebbian fast weight baseline We compare to a Hebbian fast weight baseline
as described in Miconi et al[2018] where a single layer is adapted using learned
synaptic plasticity. A single layer is adapted using Oja’s rule by feeding the
prediction errors and label as additional inputs.

Specialization through RNN coordinates In addition to the recurrent inputs
and inputs from the interaction term, each sub-RNN can be fed its coordinates
a, b, position in time, or position in the layer stack. This may allow for (1) spe-
cialization, akin to the specialization of biological neurons, and (2) for implicitly
meta-learning neural architectures by suppressing outputs of sub-RNNs based
on positional information. In our experiments, we have not yet observed any
benefits of this approach and leave this to future work.

Meta learning batched LAs In our meta-learning from scratch experiments, we
discovered online learning algorithms (similar to in-context RNNs [Hochreiter

158 B.3 Other training details

et all, 200T; Wang et all, 2016; Duan et al], 20T€]). We demonstrated high sam-
ple efficiency but the final performance trails the one of batched SGD training.
In future experiments, we also want to investigate a batched variant. Every tick
we could average a subset of each state s,;, across multiple parallel running VSML
RNNSs. This would allow for meta-learning batched LAs from scratch.

Optimizing final prediction error vs sum of all errors In our experiments we
are interested in sample efficient learning, i.e., the model making good predic-
tions as early as possible in training. This is encouraged by minimizing the sum
of all prediction errors throughout training. If only good final performance is de-
sired, optimizing solely final prediction error or a weighting of prediction errors
is an interesting alternative to be investigated in the future.

Recursive replacement of weights Variable sharing in NNs by replacing each
weight with an LSTM introduces new meta variables V,;. Those variables them-
selves may be replaced again by LSTMs, yielding a multi-level hierarchy with ar-
bitrary depth. We leave the exploration of such hierarchies to future work.

Alternative sparse shared weight matrices In this work, we have focused on
a version of VSML where the sparse shared weight matrix is defined by many
RNNs that pass messages. Alternative ways of structuring variable sharing and
sparsity may lead to different kinds of learning algorithms. Investigating these
alternatives or even searching the space of variable sharing and sparsity patterns
are interesting directions for future research.

Meta Testing algorithm Meta testing corresponds to unrolling the VSML RNNs.
The learning algorithm is encoded purely in the recurrent dynamics. See

for pseudo-code.

159 B.4 Other relationships to previous work

Algorithm 13 VSML: Meta Testing
Require: Dataset D = {(z;,v;)}, LSTM parameters Vj,
v, = {s®} « initialize LSTM states ~ Va, b, k

for (z,y) € {(z1,y1),...,(zr,yr)} C Ddo > Innerloop over T" examples
fﬂ) =z, Va > Initialize from input image x

fork € {1,...,K} do > Iterating over K layers
Ej;’ e frnn (sl M) va,b >
kH) => . fm(sl(lk)) Vb > Create forward message

ﬁ) => fﬁ(sabg) Va > Create backward message

Uo = mﬁff“) Va > Read output
e:= VyL(y,y) > Compute error at outputs using loss L
‘nﬁgf) =€, Vb > Input errors

B.4 Other relationships to previous work

B.4.1 VSML as distributed memory

Compared to other works with additional external memory mechanisms [Sun,
1991; Mozer and Das, 1993; Santoro et al], 20T6; Mishra et al!, 20T8; Schlag
et al), 202T0], VSML can also be viewed as having memory distributed across
the network. The memory writing and reading mechanism implemented in the
meta variables V), is shared across the network.

B.4.2 Connection to modular learning

Our sub-LSTMs can also be framed as modules that have some shared meta vari-
ables V,; and distinct learned variables V7. Previous works in modular learn-
ing [Shazeer et al], 2017; Rosenbaum et al., 2018; Kirsch et all, 2018] were moti-
vated by learning experts with unique parameters that are conditionally selected
to suit the current task or context. In contrast, VSML has recurrent modules that
share the same parameters V), to resemble a learning algorithm. There is no
explicit conditional selection of modules, although it could emerge based on
activations or be facilitated via additional attention mechanisms.

160 B.4 Other relationships to previous work

B.4.3 Connection to self-organization and complex sys-
tems

In self-organizing systems, global behavior emerges from the behavior of many
local systems such as cellular automata [Codd, 20T4] and their recent neural
variants [Mordvintsev et al., 2020; Sudhakaran et all, 2021]. VSML can be seen
as such a self-organizing system where many sub-RNNs induce the emergence

of a global learning algorithm.

Appendix C

Appendix on SymLA

Algorithm 14 SymLA meta training
Require: Distribution over RL environment(s) p(e)
0 < initialize LSTM parameters
while meta loss has not converged do > Outer loop in parallel over envs
e ~ p(e) and samples ¢ ~ N(¢|6, %)
{ha} < initialize LSTM states ~ Va, b

01 ~ p(01) > Initialize environment e
fort € {1,...,L} do > Inner loop over lifetime in environment e
ab < frsead(Rabs Or.ay Ge—1, Te—1, Ty, T4) Va, b > Equation
iy Yo [(hay) Vb > Create forward messages
Mo < 3 fin(ha) Va > Create backward messages
Y M > Read out action

a; ~ plag;y) > Sample action from distribution parameterized by y
Send action a, to environment e, observe 0,1 and r;
0 < 0+ aVeEgs n(s)0,5) Eemp(e) [Zle rﬁe)(gb)]] > Update 6 using evolution
strategies (Equation B.10)

C.1 Bandits from Wang et al. [2016]

In our experiments, we use bandits of varying difficulty from Wang et al! [2016].
Let p; be the probability of the first arm for a payout of » = 1, » = 0 otherwise,
and p, the payout for the second arm. Then, we define the

* uniform independent bandit with p; ~ U[0, 1] and p, ~ U|0, 1],

161

162 C.2 Hyperparameters

Table C.1: A comparison between fixed reinforcement learning algorithms
(REINFORCE), backpropagation-based meta RL (MAML, MetaGenRL, LPG), in-
context learning RNNs, and our in-context learner with symmetries (SymLA).
mg” denotes a stationary policy that is updated at fixed intervals by backpropa-
gation.

‘ REINFORCE MetaGenRL / LPG MAML in-context RNN SymLA (ours)

Meta variables /) Initial 6p 0 0

Learned variables 0 0 0 RNN state h RNN states hlez)
Learning algorithm fixed loss func L learned loss func Ly fixed loss func L o o

+ Backprop + Backprop + Backprop

Policy ﬂ'és) ﬂ'és) ﬂ'és) o o
Black-box X X X v v
Symmetries in LA v v v X v

* uniform dependent bandit with p; ~ U[0,1] and po = 1 — py,

* easy dependent bandit with p; ~ U{0.1,0.9} and po = 1 — py,

* medium dependent bandit with p; ~ U{0.25,0.75} and p, =1 — py,
* hard dependent bandit with p; ~ U{0.4,0.6} and p, = 1 — p;.

C.2 Hyperparameters

C.2.1 SymlA architecture

We use a single recurrent layer, K = 1, with a message size of M — 8and M = 8.
To produce the next state h,;, according to Equation .9, we use parameter-shared
LSTMs with a hidden size of N = 16 (N = 64 for bandits to match Wang et al’
[2076]) and run the recurrent cell for 2 micro ticks.

C.2.2 Meta learning / outer loop

We estimate gradients V, using evolutionary strategies [Salimans et all, 20T7]
with 10 evaluations per population sample to estimate the fitness value (100
evaluations for bandits). Then, we apply those using Adam with a learning rate
of = 0.01, 5 = 0.9, and By = 0.999 (o« = 0.2 for bandits). We use a fixed
noise standard deviation of o = 0.035 (¢ = 0.2 for bandits) and a population
size of 512. Our inner loop has a length of L = 500 (L = 100 for bandits),
concatenating multiple episodes. We meta-optimize for 4,000 outer steps for

163 C.3 Scalability and complexity

bandit experiments, and 20, 000 otherwise.

C.2.3 Generalisation to unseen environments

We apply a random linear transformation (Glorot normal) to environment obser-
vations, mapping those to a 16-dimensional vector.

C.3 Scalability and complexity

The computational complexity of the inner loop (and meta testing) is O(N?W)
per environment step, where N is the hidden size of each RNN and W is
the number of RNNs (number of parameters in a conventional neural net-
work). N can generally be small, in most experiments N = 16 (see Appendix
C.2). Space complexity is independent of the number of time-steps and is
O(N? + NW + MS), where M = 8 is the message size and S denotes the
number of messages. The computational complexity of meta training highly de-
pends on the chosen meta-optimizer. With ES, each outer optimization step has
a complexity of O(N*W LPE), where L = 500 is the length of the evaluated
lifetime, P = 512 is the size of the particle population (within range of the ES lit-
erature), and E is the number of evaluations per particle to estimate the average
reward. Space complexity is generally low for gradient-free optimization such
as ES; for meta-training it is O(N?+ NW + M S), if the population is evaluated in
sequence. Compared to the in-context RNNs (RL?), SymLA is slower by a factor
of N2 (here N = 16) in both meta training and testing if the number of RNNs
is chosen to equal the in-context RNN’s parameters. In practice, the RNNs also
increase the capacity such that fewer RNNs may also be sufficient.

164 C.4 Code snippet

C.4 Code snippet

import haiku as hk
import jax

import jax.numpy as jnp
import numpy as np
import optax

class SymlaLayer (hk.Module) :

def __init__(self, input_size: int, output_size: int, msg_size: int, hidden_size: int, micro_ticks: int):
super () .__init__()
self.input_size = input_size
self.output_size = output_size
self.micro_ticks = micro_ticks
self._lstm = hk.LSTM(hidden_size)
self._fwd_messenger = hk.Linear(msg_size)
self._bwd_messenger = hk.Linear(msg_size)
self._tick = hk.vmap(hk.vmap(self._tick, (0, None, 0, None)), (0, O, None, None))

def _tick(self, lstm_state: hk.LSTMState, fwd_msg: jnp.ndarray, bwd_msg: jnp.ndarray, aux: jnp.ndarray):
inp = jnp.concatenate([fwd_msg, bwd_msg, aux])
out, lstm_state = self._lstm(inp, lstm_state)
return out, lstm_state

def create_state(self):
lstm_state_shape = (2, self.input_size, self.output_size, self._lstm.hidden_size)
lstm_state = jnp.zeros(lstm_state_shape)
lstm_state = hk.LSTMState(hidden=1stm_state[0], cell=1lstm_state[1])

fwd_msg_shape = (self.output_size, self._fwd_messenger.output_size)
fwd_msg = jnp.zeros(fwd_msg_shape)

bwd_msg_shape = (self.input_size, self._bwd_messenger.output_size)
bwd_msg = jnp.zeros(bwd_msg_shape)

return lstm_state, fwd_msg, bwd_msg

def __call__(self, state, inp: jnp.ndarray, inp_end: jnp.ndarray, aux: jnp.ndarray):
1stm_state, fwd_msg, bwd_msg = state

Update state
in_fwd_msg = jnp.concatenate([bwd_msg, inp[:, Nonell, axis=-1)
in_bwd_msg = jnp.concatenate([fwd_msg, inp_end[:, Nonell, axis=-1)
for _ in range(self.micro_ticks):
out, lstm_state = self._tick(lstm_state, in_fwd_msg, in_bwd_msg, aux)

Update forward messages
out_fwd_msg = self._fwd_messenger (out) .mean(axis=0)
Update backward messages
out_bwd_msg = self._bwd_messenger (out) .mean(axis=1)

Read out logits for action
logits = out_fwd_msgl:, 0]

return logits, (lstm_state, out_fwd_msg, out_bwd_msg)

class SymlaModel (hk.Module) :

def __init__(self):
super () . __init__Q)
self._layer = Symlalayer(...)

def __call__(self, env, env_state):
prev_action = jnp.zeros(env.action_shape)
state = self._layer.create_state()
rng_ticks = jnp.array(hk.next_rng_keys(env.meta_episode_length))

def scan_tick(carry, rng_tick):
env_state, state, prev_action = carry
rng_tick, rng_action = jax.random.split(rng_tick)

Obtain signals from environment
obs = env.observation(env_state)
reward = env.reward(env_state)

165 C.4 Code snippet

done = env.is_terminal(env_state).astype(jnp.float32)

Tick layer

inp = obs.flatten()

aux = jnp.stack([reward, dome])

logits, new_state = self._layer(state, inp, prev_action, aux)

Create action
action = jax.random.categorical(rng_action, logits)
action = jax.nn.one_hot(action, logits.shape[-1])

Tick environment
new_env_state = env.step(rng_tick, env_state, action)
reward = env.reward(env_state)

return (new_env_state, new_state, action), reward

_, rewards = hk.scan(scan_tick, (env_state, state, prev_action), rng_ticks)
loss = -jnp.mean(rewards)
return loss, rewards

class Experiment:

def __init__(self, noise_std: float, population_size: int, learning rate: float):
self._model = hk.transform(lambda *x: SymlaModel() (*x))
self._optimizer = optax.adam(learning rate)
self._env = Env()
self._population_size = population_size
self._noise_std = noise_std
self._update_func = jax.jit(self._update_func)

def _es_eval(self, params, rng, env_state):
Extract shapes
treedef = jax.tree_structure(params)
shapes = jax.tree_map(lambda p: np.asarray(p.shape), params)

Random keys
rng, param_rng = jax.random.split(rng)
keys = jax.tree_unflatten(treedef, jax.random.split(param_rng, treedef.num_leaves))

Generate noise
noise = jax.tree_multimap(jax.random.normal, keys, shapes)
scaled_noise = jax.tree_map(lambda x: x * self._noise_std, noise)

Antithetic sampling
params_pos = jax.tree_multimap(jnp.add, params, scaled_noise)
params_neg = jax.tree_multimap(jnp.subtract, params, scaled_noise)

Evalute in environment
loss_pos, rewards = self._model.apply(params_pos, rng, self._env, env_state)
loss_neg, _ = self._model.apply(params_neg, rng, self._env, env_state)

Compute grads
es_factor = (loss_pos - loss_neg) / (2 * self._noise_std ** 2)
grads = jax.tree_map(lambda x: x * es_factor, scaled_noise)

return grads

def _update_func(self, params, opt_state, rng):
rng, rng_update = jax.random.split(rng)
grads = self._es_grads(params, rng_update)

updates, opt_state = self._optimizer.update(grads, opt_state)
params = optax.apply_updates(params, updates)

return params, opt_state, rng

def _es_grads(self, params, rng):
rng_env_init, rng_eval = jax.random.split(rng)
rng_env_init = jax.random.split(rng_env_init, self._population_size)
rng_eval = jax.random.split(rng_eval, self._population_size)

env_state = jax.vmap(self._env.initial_state) (rng_env_init)
v_es_eval = jax.vmap(self._es_eval, in_axes=(None, 0, 0))
grads = v_es_eval(params, rng_eval, env_state)

grads = jax.tree_map(lambda x: jnp.mean(x, axis=0), grads)

return grads

166

C.4 Code snippet

def train(self, seed: int, num_iterations: int):
rng = jax.random.PRNGKey(seed)
rng, rng_init = jax.random.split(rng)

dummy_env_state = self._env.initial_state(rng_init)

params = self._model.init(rng_init, self._env, dummy_env_state)
opt_state = self._optimizer.init(params)

for _ in range(num_iterations):
params, opt_state, rng = self._update_func(params, opt_state, rng)

Appendix D

Appendix on GPICL

D.1 Summary of insights

Insight 1: It is possible to learn-to-learn with black-box models Effective in-
context learning algorithms can be realized using black-box models with few
inductive biases, given sufficient meta-training task diversity and large enough
model sizes. To transition to the learning-to-learn regime, we needed at least
213 = 8192 tasks.

Insight 2: Simple data augmentations are effective for general learning-to-learn
The generality of the discovered learning algorithm can be controlled via the
data distribution. Even when large task distributions are not (yet) naturally avail-
able, simple augmentations that promote permutation and scale invariance are
effective.

Insight 3: The meta-learned behavior has algorithmic transitions When in-
creasing the number of tasks, the meta-learned behavior transitions from task
memorization, to task identification, to general learning-to-learn.

Insight 4: Large state is more crucial than parameter count The specific in-
ductive biases of each architecture matter to a smaller degree. The driving fac-
tor behind their ability to learn how to learn is the size of their state. Further-
more, this suggests that the model size in terms of numbers of parameters plays a
smaller role in the setting of learning-to-learn and Transformers have benefited in
particular from an increase in state size by self-attention. In non-meta-learning

167

168 D.2 Limitations

sequence tasks parameter count is thought to be the performance bottleneck
[Collins et all, 2016]. Beyond learning-to-learn, this likely applies to other tasks
that rely on processing and storing large amounts of sequence-specific informa-
tion.

D.2 Limitations

Varying input and output sizes Compared to many previous works in meta-
learning [Andrychowicz et all, 2016; Finn et al], 2017; Kirsch and Schmidhuber,
2021], the discovered learning algorithms are only applicable to an arbitrary in-
put and output size by using random projections. This may make it more difficult
to apply the learning algorithm to a new, unseen problem. This problem also
applies to Transformers applied to multiple tasks and modalities. Related work
has solved this problem by tokenizing inputs to compatible, unified represen-
tations [Chowdhery et all, 2022]. We expect these techniques or others to be
useful in the learning-to-learn context too.

Processing large datasets Learning algorithms often process millions of inputs
before outputting the final model. In the black-box setting, this is still difficult
to achieve. Recurrency-based models usually suffer from accumulating errors,
whereas Transformers computational complexity grows quadratically in the se-
quence length. Additional work is required to build models capable of pro-
cessing and being trained on long sequences. Alternatively, parallel processing,
similar to batching in learning algorithms, may be a useful building block.

D.3 The transition to general learning-to-learn

In we observe a quick transition from task identification to general-
izing learning-to-learn (the second dashed line) as a function of the number of
tasks. Previously, (c) showed a similar transition from no learning
to learning on unseen tasks. What happens during this transition and when
do the found solutions correspond to memorizing (task memorization or seen
task identification) vs generalizing solutions? To analyze the transition from task
identification to general learning to learn, we perform multiple training runs
with varying seeds and numbers of tasks on MNIST. This is shown in Figure D.1],
reporting the final training loss. We find that the distribution is bi-modal. So-
lutions at the end of training are memorizing or generalizing. Memorization

169 D.4 Architectural details and hyperparameters

cluster: The larger the number of tasks, the more difficult it is to memorize all
of them with a fixed model capacity (or learn to identify each task). General-
ization cluster: At a certain number of tasks (here 6000), a transition point is
reached where optimization sometimes discovers a lower training loss that cor-
responds to a generalizing learning to learn solution. For larger numbers of tasks
the solutions always settle in the generalizing cluster.

Figure D.1: Solutions found by GPICL

1.6 1 _....i:t. ¢ | after meta-training are bi-modal, with
14 . " - | a memorization and generalization
8., 1 pET. mode. Each point represents the train-
o . ing loss at the end of meta-training
Zg 109 ¢ ted for runs with different seeds and for
" osq{ various numbers of tasks that include
0.6 ' the transition boundary previously ob-

i served. Almost all solutions are either

Ok 2k 5k 8k 10k 12k 15k in @ memorization cluster or in a gen-
Number of tasks eralization cluster.

D.4 Architectural details and hyperparameters

Transformer details By default, all Transformers have a key, value, and query
size of 32, 8 heads, and 4 layers, and model size of N,; = 256. The model size
defines the dimensionality of each token, and the MLP between layers scales
this size up to a hidden representation of 4 x N,; where N,,; corresponds to the
model size.

Outer-product LSTM We slightly modify an LSTM by replacing the context
state with an outer-product update and inner-product read-out.

x_and_h = jnp.concatenate([inputs, prev_state.hidden], axis=-1)

gated = hk.Linear(8 * size * self.num_heads) (x_and_h)
gated = gated.reshape((batch_size, self.num_heads, 8 * size))
gated = checkpoint_name(gated, 'gated')

i = input, g = cell_gate, f = forget_gate,

q = query, o = output_gate

sizes = (3 * size, 3 * size, size, size)

indices = np.cumsum(sizes[:-1])

k1, k2, q, o = jnp.split(gated, indices, axis=-1)

scale = jax.nn.softplus(

hk.get_parameter('key_scale', shape=(), dtype=kl.dtype,

init=jnp.zeros))

i, g, f = jnp.einsum('bhki,bhkj->kbhij',
jax.nn.tanh(split_axis(k1l, (3, size))) * scale,
jax.nn.tanh(split_axis(k2, (3, size))))

170 D.5 Experimental details

f = jax.nn.sigmoid(f + 1) # Forget bias

c = f * prev_state.cell + jax.nn.sigmoid(i) * g
read = jnp.einsum('bhij,bhi->bhj', c, @)

h = hk.Flatten() (jax.nn.sigmoid(o) * jnp.tanh(read))

VSML We use a version of VSML with a single layer and self-messages [Kirsch
etall],20223] of size 8. Each LSTM has a hidden size of 16. For each LSTM update
we use two micro-ticks. We train on 22° tasks with a 90% biased permutation
distribution. The task batch size is 8. All images are scaled to a size of 32 x 32 x
3

VSML without symmetries Before activations are fed to a standard instantiation
of VSML, all inputs are projected using a learnable linear projection. Logits are
generated using another linear projection, followed by a softmax. We use a
version of VSML with a single layer and self-messages [Kirsch et all, 20223a] of
size 8. The LSTMs are on a grid of k x k LSTMs, where k € {1,2,4,8,16,24}.
Each LSTM has a hidden size of 64. For each LSTM update we use two micro-
ticks. We train on 2% tasks with a 90% biased permutation distribution. The
task batch size is 128. All images are scaled to a size of 14 x 14.

LSTM For the results in [Table 5.2, we used a hidden size of 256 and 10° op-
timization steps. Larger hidden sizes were harder to optimize. We train on 2%
tasks with a 90% biased permutation distribution. The task batch size is 128. All
images are scaled to a size of 32 x 32 x 3

D.5 Experimental details

Most experiments can be run on a single GPU, some require 16 GPUs due to
sequence length and large batch sizes, with sufficient GPU memory (around 16
GB each). Some experiments, such as Figure 5.2, require up to 1000 runs of that
kind to produce the final heat-map.

Input normalization Each dataset is z-normalized by its mean and standard
deviation across all examples and pixels.

Number of seeds and shading If not noted otherwise, line plots use 8 seeds
for meta-training and at least 512 seeds for meta-testing. Shading indicates 95%
confidence intervals.

171 D.5 Experimental details

Random dataset To test the meta-learned learning algorithms on a synthetically
generated problem, we generate classification datasets of 10 datapoints where
the input z € R32*32X3 js drawn from a uniform distribution between 0 and 1.
For each datapoint, labels y are drawn from a uniform categorical distribution
of 10 classes.

The MLP has two hidden layers of varying size with relu activations.
The Transformer has the default parameters as defined above.

We use a transformer model with a model size of 256. We train on
225 tasks with a 90% biased permutation distribution. The task batch size is 128.
All images are scaled to a size of 32 x 32 x 3 Inputs are z-normalized across the
dataset and all input dimensions.

The SGD baseline was obtained by sweeping over learning rates
from 10~ to 0.5, optimizers SGD, Adam and Adam with weight decay, one or
two layers, and hidden sizes of 32, 64, or 128 on MNIST. The best configuration
(most sample efficient) corresponds to a learning rate of 10~3, Adam, and no
hidden layers. SGD performs updates online on each one out of the 100 data
points. MAML is equivalent to SGD up to the difference that we meta-train the
weight initialization according to where 6 are the initial parameters
of the classifier that is then updated using SGD at meta-test time. All black-box
approaches do not use gradient descent at meta-test time. All meta-learning
approaches where meta-trained and tuned via grid search on MNIST.

g 4 Input normalization is disabled.
Figure 5.5/ The Transformer uses a task batch size of 512.

g § Trained on 2! tasks generated from FashionMNIST with labels fully
permuted.

Trained on 2'¢ tasks generated from FashionMNIST with labels fully
permuted.
Figure 5.8 Trained on 26 tasks generated from FashionMNIST with label per-

mutations varied.

172 D.6 Additional experiments

Task General Task

Task General Task
memorization| | identification | learning to learn memorization

Task General
‘\dentificat\on H learning to learn memorization identification | learning to learn

—— Seen MNIST
Unseen MNIST

—— Seen FashionMNIST
Unseen MNIST

0.6 — Seen KMNIST
Unseen MNIST

0.5 —— Unseen FashionMNIST
—— Unseen KMNIST
0.4 i /
= i
i
i
i
i
i
i
i
i

—— Unseen FashionMNIST
—— Unseen KMNIST
0

—— Unseen FashionMNIST
—— Unseen KMNIST

Accuracy improvement within sequence
°

Accuracy improvement within sequence
°
Accuracy improvement within sequence

0.2
01 oo#@é
0.0
“o1 -0.2
2 2 2 2 2 2 2 2 2 2 2 2 2 212 2 2 2 2 2 2 2 2 2 2 2 2 2

Number of tasks Number of tasks. Number of tasks

Figure D.2: Transformers exhibit three different phases in terms of meta-
learned behavior on various meta training datasets. (1) When training on a
small number of tasks, tasks are memorized. (2) Tasks from the training distri-
bution are identified, which is evident as a within-sequence increase of perfor-
mance. (3) When training across many tasks, we discover a learning algorithm
that generalizes to unseen tasks and unseen datasets.

Task [Ta |General ‘Task
memorization identification | learning to learn memorization

Task | [General
‘\dentification‘ ‘Iearnmg to Ieam‘ Task General ‘

Task
memonzation‘ ‘\dentificat\on learning to learn

o
3

—— Seen MNIST
Unseen MNIST
—— Unseen FashionMNIST
—— Unseen KMNIST
—— Unseen CIFAR10
—— Unseen SVHN

—— Seen FashionMNIST
Unseen MNIST

—— Seen CIFAR10

06 Unseen MNIST
—— Unseen FashionMNIST —— Unseen FashionMNIST
—— Unseen KMNIST 0.5 — Unseen KMNIST =
—— Unseen CIFAR10
s 047 — unseen SVHN
z g oo éw

—— Unseen CIFAR10
20 s 26 20 gz is gl pu g 20) 26 20 gz is gl pu g 20 2 26 20 2 ls s pn ok

o

EY
°
>

° °
o kS

° °
o o

°

Accuracy improvement within sequence

%

;;

Accuracy improvement within sequence
o o
woon

Accuracy improvement within sequence
o

—— Unseen SVHN
Number of tasks Number of tasks Number of tasks

Figure D.3: The algorithmic transitions also happen when using the embed-
dings from Section 5.4.4. This enables faster learning on datasets such as
CIFAR10 with only 100 training examples while still generalizing to various
datasets.

We trained a Transformer with model size 64 and 32 seeds for each
number-of-tasks-configuration.

D.6 Additional experiments

Algorithmic transitions on other meta training datasets In and [Fig]
we observe a quick transition between task identification and general
learning-to-learn as a function of the number of tasks. We show these tran-
sitions on more meta training datasets in Figure D.2. When using ImageNet
embeddings as discussed in Section 5.4.4, we observe similar transitions also
on CIFAR10 and other datasets as shown in Figure D.3].

173 D.6 Additional experiments

Meta-test loss changes in algorithmic transitions We have observed algorith-
mic transitions across various datasets. In we observed that solu-
tions found by GPICL after meta-training cluster into two groups of task mem-
orization/identification and general learning-to-learn. As the number of tasks
increases, more meta-training runs settle in the generalization cluster. A similar
behavior can be observed for meta-test losses (on the final predicted example)
in Figure D.4. There is a visible transition to a much lower meta-test loss at
a certain number of tasks on MNIST and KMNIST. During this transition, sep-
arate meta-training runs cluster into two separate modes. Also compare with
Figure D.2 and Figure D.3. On FashionMNIST, this transition appears to be sig-
nificantly smoother but still changes its ‘within sequence learning behavior’ in

three phases as in Figure D.7.

CLIP embeddings and mini-Imagenet In addition to the ImageNet embeddings
from Section 5.4.4, we have also conducted experiments with CLIP [Radford
et all, 2021] embeddings and mini-Imagenet. In these experiments (see Fig]
ure D.5), we first project inputs into a latent space with a pre-trained CLIP
model (ViT-B-32 laion2b_s34b_b79k) and then proceed as before, randomly
projecting these features, and training a GPICL Transformer on top. We add the
mini-ImageNet dataset in these experiments and use a 10-way 10-shot setting to
ensure the same number of classes across datasets and a similar sequence length
to previous experiments. We observe strong and generalizable in-context learn-
ing when leveraging these pre-trained embeddings, without meta-training on
unseen datasets.

Large State is Crucial for Learning We show that for learning-to-learn the size
of the memory Ng at meta-test time (or state more generally) is particularly im-
portant in order to be able to store learning progress. We test this by train-
ing several architectures with various Ng in our meta-learning setting. In addi-
tion to Figure 5.5, Figure D.G show meta-test performance on more tasks and
datasets.

Sequence length In all experiments of the main chapter we have meta-trained
on a sequence length (number of examples) of 100. This is a small training
dataset compared to many human-engineered learning algorithms. In general, as
long as the learning algorithm does not overfit the training data, more examples
should increase the predictive performance. In we investigate how
our model scales to longer sequence lengths. We observe that the final accuracy

174 D.6 Additional experiments

Full task range Zoomed into transition
task = Seen MNIST task = Unseen MNIST task = Seen MNIST task = Unseen MNIST
44 E 44 E
- g 34 g § 3 i
L N
Z 927 . 8 24 1
= ..] 1
- $ie038 | tiraric
C o+ T T T T T T T T T T
8 task = Unseen FashionMNIST task = Unseen KMNIST task = Unseen KMNIST
£ 57 L::i.1 1
S 4 ; 4+ i, 1:
= .
2 24 b H . g24.:, 'K
1 E 14 1
0= T T T T T T T 0 -+ T T T T T
0k 10k 20k 30k ok 10k 20k 30k 19k 20k 20k 19k 20k 20k
Number of tasks Number of tasks Number of tasks Number of tasks
task = Seen KMNIST task = Unseen MNIST task = Seen KMNIST task = Unseen MNIST
- - 5 - .
44 R 4 R
%] w
;é 3 E é 31 188es08
— 7]
ZY 1 & 1
<z : RN E A T S I I S
g oL+ : : : oL
- task = Unseen FashionMNIST task = Unseen KMNIST task = Unseen FashionMNIST task = Unseen KMNIST
- - 5 - -
o °1.
.= 4 4
(4] : iLsistze
S s §
|_g 3 - . g 34 b .
o : o HER R NN
@ 24 b @ 2 . . 1 . .
14] 1 R R AN | . :
0 T T T T T T T 0 -+ T T T T T
0k 10k 20k 30k 0k 10k 20k 30k 17k 18k 18k 17k 18k 18k
Number of tasks Number of tasks Number of tasks Number of tasks
task = Seen FashionMNIST task = Unseen MNIST

Test loss

o4

s task = Unseen FashionMNIST task = Unseen KMNIST

Trained on FashionMNIST

Test loss

ok 10k 20k 30k Ok 10k 20k 30k
Number of tasks Number of tasks

Figure D.4: The meta-test loss transitions at a certain number of tasks. Each point
represents the meta-test loss on the final predicted example for meta-training runs with
different seeds and for various numbers of tasks that include the transition boundary
previously observed. There is a visible transition to a much lower meta-test loss at
a certain number of tasks on MNIST and KMNIST. The right column zooms into the
transition an shows how separate training runs cluster into two separate modes. On
FashionMNIST, this transition appears to be significantly smoother.

175 D.6 Additional experiments

- GPICL randomized + CLIP embeddings
I ICL + CLIP embeddings
0.0 - I l l h

Mini-ImageNet MNIST Fashlon MNISTCIFAR 10 SVHN
(meta-trained) (unseen) (unseen) (unseen) (unseen)

Meta-test dataset

o o o =
> o © o
1 1 1

o
N
1

Meta-test accuracy, 10-way 10-shot

Figure D.5: CLIP embeddings provide useful domain-specific knowledge that
can be leveraged while still generalizing to other datasets GPICL is meta-trained
on mini-Imagenet either directly with CLIP embeddings or with randomly trans-
formed embeddings. CLIP helps to accelerate meta-test-time in-context learning
on many datasets, with the exception of SVHN. The learning algorithms still
generalize to a wide range of datasets.

(a) Seen MNIST Unseen MNIST Unseen FashionMNIST
(seen task & seen dataset) (unseen task, seen dataset) (unseen task, unseen dataset)

e LSTM

© Transformer

0.84e Outer-product LSTM

VSML without symmetries,

1.0

Accuracy

24 26 28 10 2 Hu 24 26 28 l0 2 ol 24 26 28 Ql0 pl2 ola
State size State size State size

(b) Seen MNIST
10 (seen task & seen dataset)

)
»

Accuracy
o o o
N S o
P A)
“® o
“ o
Lo
»
e
@
@ o ¢ 00
ey

0.0

210 212 214
Parameter count

Figure D.6: The state size (accessible memory) of an architecture most strongly
predicts its performance as a general-purpose learning algorithm. (a) A large
state is crucial for learning-to-learn to emerge. (b) The parameter count correlates
less well with learning capabilities.

176 D.6 Additional experiments

o
©
1

e o o o
B (9] (o)} ~N
1 1 1 1

accuracy

o
w
1

task
I Seen FashionMNIST
0.1 ™= Unseen FashionMNIST
B Unseen MNIST

&
N
1

0.0 -

50 100 200 400
sequence_length

Figure D.7: Increasing the sequence length during meta-training and meta-
testing improves the predictive performance of the final query in the sequence.
Error bars indicate 95% confidence intervals.

of the last query in the sequence consistently increases with longer sequences.
The generalization to longer sequences than those seen during meta-training is
another important direction for future work.

Gradient and update statistics To better understand the properties of the loss
plateau, we visualize different statistics of the gradients, optimizer, and updates.
In Figure D.§, we track the exponential moving average statistics of Adam before
the loss plateau and after (dashed vertical line). In we investigate
how gradients differ between settings with a plateau and settings with a biased
distribution where the plateau is avoided. We plot the cosine similarity between
consecutive optimization steps, the gradient L2-norm, and the similarity and
norm of the weight updates after normalization with Adam. The statistics are
plotted cumulatively or smoothed with a Gaussian filter for better readability.
The gradient and update cosine similarity differ only marginally between cases
with a plateau and cases without. We observe that the gradient L2-norm in the
plateau is half as big as in the biased distribution case, although the updates
that Adam applies are going towards zero. This also results in not moving far
from parameter initialization when in the plateau. We hypothesize this has to
do with varying gradient norms when looking at individual parameter tensors
(Figure D.T0). We observe that the gradients have a small norm for most tensors,
except for the last layer.

177 D.6 Additional experiments

norm_type = MovAvg gradient norm norm_type = MovAvg gradient squared norm

L2 norm

0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
step step

Figure D.8: L2-norms of the gradient and squared gradient exponential moving
average in Adam. The dashed line corresponds to the loss drop at the end of the
loss plateau.

Batch size and number of tasks influence on plateau length Instead of looking
at the plateau length in terms of the number of steps (Figure 5.7), we may also
be concerned with the total number of tasks seen within the plateau. This is
relevant in particular when the task batch is not processed fully in parallel but
gradients are accumulated. shows the same figure but with the
number of tasks in the plateau on the y-axis instead. It can be observed that
larger batch-sizes actually increase the data requirement to leave the plateau,
despite decreasing the plateau in terms of the number of optimization steps.
Similarly, a larger task training distribution requires a larger number of tasks to
be seen within the plateau.

Adjusting Adam’s ¢ or changing the optimizer As discussed in the main chap-
ter and visualized in Figure D.T12b, decreasing e significantly shortens the plateau.
This is due to the rescaling of very small gradient magnitudes being limited by
e. At the same time it incurs some instability. Directly normalizing the gradient

by applying the sign function element-wise (Figure D.T2a) to the exponential
gradient average shortens the plateau even further.

When memorization happens, can we elicit grokking? In [Figure 5.7a we have
seen that an insufficiently large task distribution can lead to memorization in-
stead of general learning-to-learn. At the same time, showed that
biasing the data distribution is helpful to avoid loss plateaus. Power et all [2022]
observed a phenomenon which they called “grokking” in which even after hav-

178 D.6 Additional experiments
(@ (b) (©)
1.00
2.2 W‘M
0.75- 051
2.0
L) . 0.50 £ 04
o permute_labels_prob 'G‘ 0.254 gl
2164 0.0 g B o34
2 — 0.1 S 0.00 5,] -
£] — 0.9 s <
1.4] £
g 1.0 g -0251 ‘E’ 0.2
1.2 @
-0.50 o
1.0 o751 0.1
0.8 i
oo oo,
140
200 100 120
100
& 1501 € &1 13
'Z; E‘ 2 801
g £ 3
& 1001 i 3 60 -
£ 3 404 3
401
501 204
201
o 0 04
1.00 0.30
0751 # 0.25 1
g 0.501 £
? 2 0.20
%’ 0.25 ;l
k<] ©
5 000 2015
= U
8 -0.251 5
g € 0.101
“ ~0.50 @
—0.75 0.05 A
_100 1 T 000 1 T T T T T T
400 100
80 -
£ 300 3
:\ <
8 @' 60
2 k:
S 200 a
€ g 40
g a0
3 3
100 204
0 04

6 10600 20600 30600 40600 50600
step

é 10600 20600 30600 40600 50600
step

Figure D.9: Gradient and Adam update statistics for differently biased data dis-
tributions. (a) Plateaus in the loss are influenced by the bias in the data distri-
bution. Plateaus result in moving away slowly from the parameter initialization.
(b) The cosine similarity of both gradients and updates in consecutive steps is
only marginally different with or without a loss plateau. (c) While the gradient
norm is about half as big when a plateau exists, the updates are going towards

zero.

179 D.6 Additional experiments

transformer/In_f/offset/grad_norm 1
transformer/h3_mlp/linear/b/grad_norm 1
transformer/h3_In_2/offset/grad_norm 1
transformer/h3_mlp/linear_1/w/grad_norm 1
transformer/h3_In_1/scale/grad_norm 1
transformer/h3_attn/value/b/grad_norm 1
transformer/h3_attn/query/w/grad_norm 1
transformer/h3_attn/query/b/grad_norm 1
transformer/h3_attn/linear/w/grad_norm 1
transformer/h3_attn/linear/b/grad_norm 1
transformer/h3_attn/key/b/grad_norm 1
transformer/h2_mlp/linear/w/grad_norm 1
transformer/h2_In_2/offset/grad_norm 1
transformer/h2_attn/value/w/grad_norm 1
transformer/h2_attn/value/b/grad_norm 1
transformer/h2_attn/query/w/grad_norm 1
transformer/h2_attn/query/b/grad_norm 1
transformer/h2_attn/linear/w/grad_norm 1
transformer/h0_In_1/scale/grad_norm 1
transformer/h3_mlp/linear/w/grad_norm 1
transformer/h1l_mlp/linear_1/b/grad_norm 1
transformer/hl_mip/linear/w/grad_norm 1
transformer/h2_attn/key/b/grad_norm 1
transformer/h1l_mlp/linear/b/grad_norm 1
transformer/h1_In_2/offset/grad_norm 1
transformer/h1_In_1/scale/grad_norm 1
transformer/h2_mlp/linear_1/b/grad_norm 1
transformer/hl_mlp/linear_1/w/grad_norm 1
transformer/h1_In_1/offset/grad_norm 1
transformer/h0_attn/query/b/grad_norm 1
transformer/h1_attn/query/b/grad_norm 1
transformer/h1_attn/key/w/grad_norm E
transformer/h0_mlp/linear_1/b/grad_norm E
transformer/h1_attn/value/b/grad_norm 1
transformer/h0_attn/value/w/grad_norm 1
transformer/h0_attn/value/b/grad_norm 1
transformer/h0_attn/query/w/grad_norm 1
transformer/h0_In_2/offset/grad_norm E
transformer/h1_attn/value/w/grad_norm E
transformer/h0_attn/linear/w/grad_norm 1
transformer/h2_In_1/offset/grad_norm E
transformer/h0_attn/key/b/grad_norm 1
linear_out/w/grad_norm 1
linear_out/b/grad_norm R
linear/w/grad_norm E
transformer/h1_attn/key/b/grad_norm 1
transformer/h1_attn/linear/b/grad_norm E
transformer/h0_attn/key/w/grad_norm 1
transformer/h2_attn/linear/b/grad_norm 1
transformer/h1_In_2/scale/grad_norm R
transformer/h0_In_2/scale/grad_norm R
transformer/h3_In_1/offset/grad_norm 1
transformer/h1_attn/query/w/grad_norm R
transformer/h3_attn/key/w/grad_norm 1
transformer/h2_In_2/scale/grad_norm R
transformer/h2_In_1/scale/grad_norm R
transformer/h0_mlp/linear_1/w/grad_norm R
transformer/h0_mip/linear/w/grad_norm 1
transformer/h0_attn/linear/b/grad_norm R
transformer/h3_In_2/scale/grad_norm R
~/pos_embs/grad_norm R
transformer/h3_mlp/linear_1/b/grad_norm R
transformer/h2_mip/linear/b/grad_norm R
transformer/In_f/scale/grad_norm 1
linear/b/grad_norm R
transformer/h2_mlp/linear_1/w/grad_norm R
transformer/h2_attn/key/w/grad_norm R
transformer/h3_attn/value/w/grad_norm g
transformer/h1_attn/linear/w/grad_norm g
transformer/h0_In_1/offset/grad_norm 1
transformer/h0_mlp/linear/b/grad_norm 1

10-° 107 105 10-3 1071 —01 02
tensor_grad_norm tensor_grad_sim

tensor

o
o
o
-
o
w

Figure D.10: Gradient L2 norms (left) and gradient cosine similarity for consec
utive optimization steps (right) for different parameter tensors. The last (output)
layer has the largest gradients. Most other gradients are small.

180

D.6 Additional experiments

of tasks Task batch size
227 516 227 25
5 20 — | s -
G261 220 / o 2% 29
M 22 M 1
B2 | — 2 B 925 — 2
© 2 © 2
S 22 £
S © 5
L2 v 2
8 8
§ 223 § 223
= =
3, 3 022
g g
o 21 o 21
220 220
2'5 26 2'7 28 29 510 2'11 o12 2'17 519 521 523 225

Task batch size

Number of tasks

Figure D.11: Instead of plotting the loss plateau length in terms of optimization
steps, we look at the total number of tasks seen within the plateau as a function
of the task batch size and the number of tasks in the training distribution. An
increase in the task batch size leads to more tasks to be processed to leave the

of tasks
215 \ 216
J18
220
14
g2 22
° —
;Z 213 Optimizer
Erg —— Adam
5o === Sign
o1 SIS
210
25 26 27 28 29 210 o1 Q12
Task batch size
277 # of tasks
— 216
g / 2
s / Y
w — 22
£ z
; 223 Optimizer
2 =" | — Adam
5 T —-=- Sign
€ p2 =
5 —
®
@ o1

28

227 |

Plateau number of tasks seen

oy
Number of tasks

Task batch size
25
27
—1)
— on
Optimizer
—— Adam
--- sign

(b)

of tasks
215 21
918
220
g2 o=
) —
2 213 €
3 — 107
]
s e
a o1
2 N 1078
) \\
25 26 27 28 29 210 o1 Q12
Task batch size
of tasks
27 216
§ 226 218
& %
£ o 222
8 — pu
%5 22 2
i €
é’ e — 102
5 - 10716
; 222 s
2291 e g 10
Lo
o
220
25 26 27 28 29 210 i1 o1
Task batch size
227 Task batch size
25
G 22 27
g2 5
£ s 211
8
s £
5 2% 10-2¢
é o 2 | --- 10718
2 e 1078
E 222
£ o
o
220
B Jlo 251 2% 2%

Number of tasks

Figure D.12: (@) When replacing Adam with a sign normalization of the gradient
or (b) reducing € the plateau length is significantly shorter.

181 D.6 Additional experiments

ing converged in terms of training loss, test loss may suddenly decrease. Large
amounts of regularization, like weight decay with a coefficient of 1.0 were found
to facilitate this behavior. Is grokking connected to the optimization behavior
we observe, and if so, do similar interventions help in our setting? We look in
particular at the boundary of memorization and generalization (24 = 16384)
where doubling the number of tasks a few more times would lead to general-
ization. shows three task settings, 219, 214 216 and three different
weight decay coefficients, 0.01,0.1,1.0. The setting of 2!¢ tasks shows general-
ization by default and only serves as a baseline for the weight decay coefficient
analysis. In the cases of memorization due to too few tasks, we have not been
able to produce grokking behavior.

Optimization difficulties in VSML Previous work has observed several opti-
mization difficulties: Slower convergence, local minima, unstable training, or
loss plateaus at the beginning of training. shows some of these diffi-
culties in the context of VSML [Kirsch and Schmidhuber, 2021]. Because VSML
has permutation invariance and parameter sharing built into the architecture as
an inductive bias, changing the number of tasks has only a small effect. We
observe that in particular deeper architectures make meta-optimization more
difficult.

182 D.6 Additional experiments

num_tasks = 1024 | weight_decay = 0.01 num_tasks = 1024 | weight_decay = 0.1 num_tasks = 1024 | weight_decay = 1.0

4.0
35 Mm
3.0 task
—— Training loss
~——— Seen FashionMNIST

25 —— Unseen FashionMNIST
—— Unseen MNIST

loss

2.0
15
1.0

o] e -

num_tasks = 16384 | weight_decay = 0.01 num_tasks = 16384 | weight_decay = 0.1 num_tasks = 16384 | weight_decay = 1.0

4.0

35 w

3.0

25

loss

2.0

15

1.0

0.5

num_tasks = 65536 | weight_decay = 0.01 num_tasks = 65536 | weight_decay = 0.1 num_tasks = 65536 | weight_decay = 1.0

4.0

35

3.0

25

loss.

2.0

15

1.0

0.5

0 25000 50000 75000 100000125000150000175000200000 O 25000 50000 75000 100000125000150000175000200000 0 25000 50000 75000 100000125000150000175000200000
step step step

Figure D.13: We investigate whether grokking as defined in Power et al] [2022]
can be produced when we observe memorization on a smaller numbers of tasks.
This would correspond to the test loss decreasing long after the training loss
has converged. We have not been able to elicit this behavior when looking at
different numbers of tasks and weight decay coefficients.

183 D.6 Additional experiments

of tasks = 2° | 1 layers # of tasks = 2° | 2 layers # of tasks = 2° | 3 layers # of tasks = 2° | 4 layers

2.254 1 1 q
0% permuted

2.00 4 —— 10% permuted 1 1 1
—— 100% permuted

1.75 A
1.50
1.25

Training loss

1.00 -
0.75 4 1 1 1

0.50 L
of tasks = 2%° | 1 layers # of tasks = 2%° | 2 layers # of tasks = 2%° | 3 layers # of tasks = 2%° | 4 layers

2.251 1 1 -
2.00 1 1 1 1
1.75

1.50 1 1 1

Training loss

1.25 1 1 1
1.00 1 1 1
0.75 4 1 1 1

0.50 T
0k 10k 20k 30k 40k 50k Ok 10k 20k 30k 40k 50k Ok 10k 20k 30k 40k 50k Ok 10k 20k 30k 40k 50k
Step Step Step Step

Figure D.14: Loss plateaus and slow convergence with deeper variants of VSML.

184 D.6 Additional experiments

Appendix E

Appendix on FME

E.1 Implementation details

Least-recently-used Buffer We initialize a least-recently-used (LRU) buffer with
a single randomly initialized neural network. The m = 100 buckets evenly cover
the entire current performance range and each holds the 100 most recent solu-
tions. Solutions from buckets with higher performance are sampled exponen-
tially more frequently. We use an exponential base of €. All layers are ini-
tialized from a truncated normal with a standard deviation of o = \/}\TE When
selected, a solution is executed for L = 1000 steps.

Architecture We stack three self-referential layers with 32 hidden units.

Sources of randomness To create a temporal tree of self-modifying solutions,
randomness must be injected into the system. This randomness originates from
the policy action sampling, non-deterministic environment steps, and potential
external noise injection as an input to the policy. We found external noise
injection not to improve the agent’s performance when sufficient randomness
originates from the policy and environment.

185

186 E.1 Implementation details

Appendix F

List of contributions

MetaGenRL, ICLR 2020

Meta-learning RL algorithms that generalize to vastly different environments.
Louis Kirsch, Sjoerd van Steenkiste, and Juergen Schmidhuber. Improving generalization in
meta reinforcement learning using learned objectives. In International Conference on Learning
Representations, 2020b. 2019 arXiv preprint arXiv:1910.04098

Invited speaker, NeurIlPS 2020 Meta Learning Workshop

Position on meta-learning learning algorithms that generalize.

Louis Kirsch. Invited talk: General meta learning. Meta Learning Workshop at Advances in
Neural Information Processing Systems, 2020

VSML, NeurlPS 2021

Encode backpropagation in RNN dynamics & meta-learn general-purpose super-
vised in-context learners from scratch that do not require hardcoded backpropa-
gation.

Louis Kirsch and Jirgen Schmidhuber. Meta learning backpropagation and improving
it. Advances in Neural Information Processing Systems, 34, 2021. 2020 arXiv preprint
arXiv:2012.14905

SymLA, AAAI 2022

How symmetries can help generalization in meta-RL.

Louis Kirsch, Sebastian Flennerhag, Hado van Hasselt, Abram Friesen, Junhyuk Oh, and Yutian
Chen. Introducing symmetries to black box meta reinforcement learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 36, pages 7202-7210, 2022a. 2021 arXiv
preprint arXiv:2109.10781

Invited speaker, ICML 2022 Decision-aware RL workshop

187

188

Louis Kirsch. Invited talk: General-purpose meta learning. Decision-awareness in Reinforcement
Learning Workshop at ICML, 2022

Self-referential learning, AutoML Conf Workshop

We investigate methods for self-referential meta-learning that do not require ex-
plicit meta-optimization to reduce our reliance on human engineering.

Louis Kirsch and Jirgen Schmidhuber. Eliminating meta optimization through self-referential
meta learning. arXiv preprint arXiv:2212.14392 and First Conference on Automated Machine
Learning (Workshop), 2022a

GPICL, Meta Learning Workshop

We demonstrate that Transformers and other black-box models can exhibit in-
context learning that generalizes to significantly different datasets while under-
going multiple transitions in terms of their learning behavior.

Louis Kirsch, James Harrison, Jascha Sohl-Dickstein, and Luke Metz. General-purpose in-context
learning by meta-learning transformers. arXiv preprint arXiv:2212.04458 and Workshop on
Meta-Learning at NeurlPS, 2022b

GLAs, Foundations Models for Decision Making Workshop

We meta-train in-context learning RL agents that generalize across domains (with
different actuators, observations, dynamics, and dimensionalities) using super-
vised learning.

Louis Kirsch, James Harrison, Daniel Freeman, Jascha Sohl-Dickstein, and Jiirgen Schmidhuber.
Towards general-purpose in-context learning agents. Foundation Models for Decision Making
Workshop at NeurlPS, 2023

CSCS (Supercomputer) grants

¢ Louis Kirsch, Michael Wand, and Jiirgen Schmiduber. Learning learning algorithms. Swiss
National Supercomputing Centre (CSCS) Project, 2019

* Louis Kirsch and Jurgen Schmiduber. Learning to replace human-engineered reinforce-
ment learning algorithms. Swiss National Supercomputing Centre (CSCS) Project, 2020

 Louis Kirsch and Jiirgen Schmiduber. Meta learning general purpose reinforcement learn-
ing algorithms. Swiss National Supercomputing Centre (CSCS) Project, 2021

* Aditya Ramesh, Louis Kirsch, and Jirgen Schmiduber. Improving curiosity-driven explo-
ration for reinforcement learning. Swiss National Supercomputing Centre (CSCS) Project,
2022a

Workshop organization
 Louis Kirsch, Ignasi Clavera, Kate Rakelly, Chelsea Finn, Jane Wang, and Jeff Clune. Be-

yond “tabula rasa’ in reinforcement learning: agents that remember, adapt, and generalize.
International Conference on Learning Representations, 2020a

189

 Feryal Behbahani, Khimya Khetarpal, Louis Kirsch, Rose Wang, Annie Xie, Adam White,
and Doina Precup. A roadmap to never-ending rl. International Conference on Learning
Representations, 2021

Collaborations

* Francesco Faccio, Louis Kirsch, and Jurgen Schmidhuber. Parameter-based value func
tions. In International Conference on Learning Representations, 2021a

e Aditya Ramesh, Louis Kirsch, Sjoerd van Steenkiste, and Jiirgen Schmidhuber. Exploring
through random curiosity with general value functions. Advances in Neural Information
Processing Systems, 2022b

* Luisa Zintgraf, Zita Marinho, lurii Kemaev, Louis Kirsch, Junhyuk Oh, and Tom Schaul.
RI2x: Reinforcement learning to explore. In The Multi-disciplinary Conference on Rein-
forcement Learning and Decision Making, 2022

* Kenny John Young, Aditya Ramesh, Louis Kirsch, and Jirgen Schmidhuber. The bene-
fits of model-based generalization in reinforcement learning. In Andreas Krause, Emma
Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, ed-
itors, Proceedings of the 40th International Conference on Machine Learning, volume
202 of Proceedings of Machine Learning Research, pages 40254-40276. PMLR, 23-29
Jul 2023

e Vincent Herrmann, Louis Kirsch, and Jirgen Schmidhuber. Learning one abstract bit at
a time through self-invented experiments encoded as neural networks. arXiv preprint
arXiv:2212.14374, 2022

e Francesco Faccio, Vincent Herrmann, Aditya Ramesh, Louis Kirsch, and Jirgen Schmid-
huber. Goal-conditioned generators of deep policies. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, 2023

¢ Mingchen Zhuge, Haozhe Liu, Francesco Faccio, Dylan R Ashley, Rébert Csordas, Anand
Gopalakrishnan, Abdullah Hamdi, Hasan Abed Al Kader Hammoud, Vincent Herrmann,
Kazuki Irie, et al. Mindstorms in natural language-based societies of mind. arXiv preprint
arXiv:2305.17066, 2023

e Samuel Schmidgall, Jascha Achterberg, Thomas Miconi, Louis Kirsch, Rojin Ziaei, S Ha-
jiseyedrazi, and Jason Eshraghian. Brain-inspired learning in artificial neural networks: a
review. arXiv preprint arXiv:2305.11252, 2023

e Aleksandar Stani¢, Dylan Ashley, Oleg Serikov, Louis Kirsch, Francesco Faccio, Jir-
gen Schmidhuber, Thomas Hofmann, and Imanol Schlag. The languini kitchen: En-
abling language modelling research at different scales of compute. arXiv preprint
arXiv:2309.11197, 2023

¢ Matthew Jackson, Chris Lu, Louis Kirsch, Robert Lange, Shimon Whiteson, and Jakob
Foerster. Discovering temporally-aware reinforcement learning algorithms. Advances in
Neural Information Processing Systems, 2023

* Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and
Jirgen Schmidhuber. GPTSwarm: Language agents as optimizable graphs. In Forty-first
International Conference on Machine Learning, 2024

190

e Akarsh Kumar, Chris Lu, Louis Kirsch, Yujin Tang, Kenneth O Stanley, Phillip Isola, and
David Ha. Automating the search for artificial life with foundation models. arXiv preprint
arXiv:2412.17799, 2024

Bibliography

Ekin Akyurek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou.
What learning algorithm is in-context learning? investigations with linear
models. arXiv preprint arXiv:2211.15661, 2022.

Ferran Alet, Martin F. Schneider, Tomas Lozano-Perez, and Leslie Pack
Kaelbling. Meta-learning curiosity algorithms. In International Conference
on Learning Representations, 2020.

S. Amari. A theory of adaptive pattern classifiers. IEEE Trans. EC, 16(3):
299-307, 1967.

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman,
David Pfau, Tom Schaul, Brendan Shillingford, and Nando De Freitas.
Learning to learn by gradient descent by gradient descent. In Advances in
Neural Information Processing Systems, pages 3981-3989, 2016.

Cem Anil, Yuhuai Wu, Anders Johan Andreassen, Aitor Lewkowycz, Vedant
Misra, Vinay Venkatesh Ramasesh, Ambrose Slone, Guy Gur-Ari, Ethan Dyer,
and Behnam Neyshabur. Exploring length generalization in large language
models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun
Cho, editors, Advances in Neural Information Processing Systems, 2022.

Jimmy Ba, Geoffrey Hinton, Volodymyr Mnih, Joel Z. Leibo, and Catalin
lonescu. Using Fast Weights to Attend to the Recent Past. In Advances in
Neural Information Processing Systems, pages 4331-4339, 2016a.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016b.

Sarah Bechtle, Artem Molchanov, Yevgen Chebotar, Edward Grefenstette,
Ludovic Righetti, Gaurav Sukhatme, and Franziska Meier. Meta learning via

191

192 Bibliography

learned loss. In 2020 25th International Conference on Pattern Recognition
(ICPR), pages 4161-4168. IEEE, 2021.

Feryal Behbahani, Khimya Khetarpal, Louis Kirsch, Rose Wang, Annie Xie,
Adam White, and Doina Precup. A roadmap to never-ending rl.
International Conference on Learning Representations, 2021.

Samy Bengio, Yoshua Bengio, Jocelyn Cloutier, and Jan Gecsei. On the
optimization of a synaptic learning rule. In Preprints Conf. Optimality in
Artificial and Biological Neural Networks, volume 2, 1992.

Y Bengio, S Bengio, and J Cloutier. Learning a synaptic learning rule. In
[JCNN-91-Seattle International Joint Conference on Neural Networks,
volume 2, pages 969-vol. IEEE, 1991.

Lukas Biewald. Experiment Tracking with Weights and Biases, 2020. URL
https://www.wandb.com/.

Jonathan C Brant and Kenneth O Stanley. Minimal criterion coevolution: a
new approach to open-ended search. In Proceedings of the Genetic and
Evolutionary Computation Conference, pages 67—-74, 2017.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. OpenAl Gym. arXiv preprint
arXiv:1606.01540, 2016.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre
Vandergheynst. Geometric deep learning: going beyond euclidean data.
IEEE Signal Processing Magazine, 34(4):18-42, 2017.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, et al. Language models are few-shot learners. Advances in
neural information processing systems, 33:1877-1901, 2020.

Jake Bruce, Michael D Dennis, Ashley Edwards, Jack Parker-Holder, Yuge Shi,
Edward Hughes, Matthew Lai, Aditi Mavalankar, Richie Steigerwald, Chris
Apps, et al. Genie: Generative interactive environments. In Forty-first
International Conference on Machine Learning, 2024.

Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn,
Evan Mays, Giulio Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, et al.

https://www.wandb.com/

193 Bibliography

Mle-bench: Evaluating machine learning agents on machine learning
engineering. arXiv preprint arXiv:2410.07095, 2024.

Stephanie CY Chan, Adam Santoro, Andrew K Lampinen, Jane X Wang,
Aaditya Singh, Pierre H Richemond, Jay McClelland, and Felix Hill. Data
distributional properties drive emergent in-context learning in transformers.
arXiv preprint arXiv:2205.05055, 2022.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha
Laskin, Pieter Abbeel, Aravind Srinivas, and Igor Mordatch. Decision
transformer: Reinforcement learning via sequence modeling. Advances in
neural information processing systems, 34:15084-15097, 2021.

Yutian Chen, Xingyou Song, Chansoo Lee, Zi Wang, Richard Zhang, David
Dohan, Kazuya Kawakami, Greg Kochanski, Arnaud Doucet, Marc’aurelio
Ranzato, et al. Towards learning universal hyperparameter optimizers with
transformers. Advances in Neural Information Processing Systems, 35:
32053-32068, 2022.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning Phrase
Representations using RNN Encoder-Decoder for Statistical Machine
Translation. Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1724-1734, 6 2014,

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. Palm: Scaling language modeling with pathways.
arXiv preprint arXiv:2204.02311, 2022.

Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki
Yamamoto, and David Ha. Deep Learning for Classical Japanese Literature,
2018.

Jeff Clune. Ai-gas: Ai-generating algorithms, an alternate paradigm for
producing general artificial intelligence. arXiv preprint arXiv:1905.10985,
2019.

John D Co-Reyes, Yingjie Miao, Daiyi Peng, Esteban Real, Quoc V Le, Sergey
Levine, Honglak Lee, and Aleksandra Faust. Evolving reinforcement learning
algorithms. In International Conference on Learning Representations, 2021.

194 Bibliography

Edgar F Codd. Cellular automata. Academic press, 2014.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik.
Emnist: Extending mnist to handwritten letters. In 2017 international joint
conference on neural networks (IJCNN), pages 2921-2926. IEEE, 2017.

Jasmine Collins, Jascha Sohl-Dickstein, and David Sussillo. Capacity and
trainability in recurrent neural networks. arXiv preprint arXiv:1611.09913,
20176.

Robert Csordas, Kazuki Irie, and Jirgen Schmidhuber. The devil is in the detail:
Simple tricks improve systematic generalization of transformers. In EMNLP,
2021.

David B D’Ambrosio and Kenneth O Stanley. A novel generative encoding for
exploiting neural network sensor and output geometry. In Proceedings of
the 9th annual conference on Genetic and evolutionary computation, pages
974-981, 2007.

Grégoire Delétang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin
Wenliang, Elliot Catt, Marcus Hutter, Shane Legg, and Pedro A Ortega.
Neural networks and the chomsky hierarchy. arXiv preprint
arXiv:2207.02098, 2022.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, llya Sutskever, and Pieter
Abbeel. RI?: Fast reinforcement learning via slow reinforcement learning.
arXiv preprint arXiv:1611.02779, 2016.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture
search: A survey. The Journal of Machine Learning Research, 20(1):
1997-2017, 2019.

Francesco Faccio, Louis Kirsch, and Jiirgen Schmidhuber. Parameter-based
value functions. In International Conference on Learning Representations,
2021a.

Francesco Faccio, Louis Kirsch, and Jiirgen Schmidhuber. Parameter-based
value functions. In International Conference on Learning Representations,
2021b.

Francesco Faccio, Vincent Herrmann, Aditya Ramesh, Louis Kirsch, and Jiirgen
Schmidhuber. Goal-conditioned generators of deep policies. In Proceedings
of the AAAI Conference on Atrtificial Intelligence, 2023.

195 Bibliography

Chrisantha Fernando, Dylan Banarse, Henryk Michalewski, Simon Osindero,
and Tim Rocktadschel. Promptbreeder: Self-referential self-improvement via
prompt evolution. arXiv preprint arXiv:2309.16797, 2023.

Matthias Feurer, Jost Springenberg, and Frank Hutter. Initializing Bayesian
hyperparameter optimization via meta-learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2015.

Chelsea Finn and Sergey Levine. Meta-Learning and Universality: Deep
Representations and Gradient Descent can Approximate any Learning
Algorithm. In International Conference on Learning Representations, 2018.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning
for fast adaptation of deep networks. In International Conference on
Machine Learning, pages 1126-1135. PMLR, 2017.

Sebastian Flennerhag, Andrei A. Rusu, Razvan Pascanu, Francesco Visin,
Hujun Yin, and Raia Hadsell. Meta-learning with warped gradient descent.
In International Conference on Learning Representations, 2020.

Sebastian Flennerhag, Yannick Schroecker, Tom Zahavy, Hado van Hasselt,
David Silver, and Satinder Singh. Bootstrapped meta-learning. arXiv preprint
arXiv:2109.04504, 2021.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function
approximation error in actor-critic methods. Proceedings of Machine
Learning Research, 80:1587-1596, 2018.

Kunihiko Fukushima. Neural network model for a mechanism of pattern
recognition unaffected by shift in position-neocognitron. [EICE Technical
Report, A, 62(10):658-665, 1979.

Matteo Gagliolo and Jiirgen Schmidhuber. Algorithm portfolio selection as a
bandit problem with unbounded losses. Annals of Mathematics and
Artificial Intelligence, 61(2):49-86, 2011.

Shivam Garg, Dimitris Tsipras, Percy Liang, and Gregory Valiant. What can
transformers learn in-context? a case study of simple function classes. arXiv
preprint arXiv:2208.01066, 2022.

Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho,
David Saxton, Murray Shanahan, Yee Whye Teh, Danilo Rezende, and

196 Bibliography

SM Ali Eslami. Conditional neural processes. In International Conference on
Machine Learning, pages 1704-1713. PMLR, 2018.

Felix A Gers, Jiirgen Schmidhuber, and Fred Cummins. Learning to forget:
Continual prediction with Istm. Neural computation, 12(10):2451-2471,
2000a.

Felix A Gers, Jirgen Schmidhuber, and Fred Cummins. Learning to Forget:
Continual Prediction with LSTM. Neural Computation, 12(10):2451-2471,
2000b.

Ben Goertzel. Artificial General Intelligence: Concept, State of the Art, and
Future Prospects. Journal of Artificial General Intelligence, 01 2014. doi:
10.2478 /jagi-2014-0001.

Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John
Karro, and D. Sculley. Google Vizier: A service for black-box optimization.
In ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 1487-1495, 2017.

Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and Thomas Griffiths.
Recasting gradient-based meta-learning as hierarchical bayes. In
International Conference on Learning Representations, 2018.

Karol Gregor. Finding online neural update rules by learning to remember.
arXiv preprint arXiv:2003.03124, 3 2020.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long
sequences with structured state spaces. arXiv preprint arXiv:2111.00396,
2021.

David Ha and Jirgen Schmidhuber. Recurrent world models facilitate policy
evolution. In Advances in Neural Information Processing Systems, pages
2450-2462, 2018.

David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. In International
Conference on Learning Representations, 2017.

Jean Harb, Tom Schaul, Doina Precup, and Pierre-Luc Bacon. Policy
evaluation networks. CoRR, abs/2002.11833, 2020.

197 Bibliography

Vincent Herrmann, Louis Kirsch, and Jirgen Schmidhuber. Learning one
abstract bit at a time through self-invented experiments encoded as neural
networks. arXiv preprint arXiv:2212.14374, 2022.

Vincent Herrmann, Francesco Faccio, and Jiirgen Schmidhuber. Learning
useful representations of recurrent neural network weight matrices. In
Forty-first International Conference on Machine Learning, 2024.

S Hochreiter and J Schmidhuber. Long Short-Term Memory. Neural
Computation, 9(8):1735-1780, 1997a.

Sepp Hochreiter and Jirgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735-1780, 1997b.

Sepp Hochreiter, A Steven Younger, and Peter R Conwell. Learning to learn
using gradient descent. In International Conference on Artificial Neural
Networks, pages 87—-94. Springer, 2001.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya,
Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks,
Johannes Welbl, Aidan Clark, et al. Training compute-optimal large
language models. arXiv preprint arXiv:2203.15556, 2022.

Noah Hollmann, Samuel Miiller, Katharina Eggensperger, and Frank Hutter.
Tabpfn: A transformer that solves small tabular classification problems in a
second. Table Representation Workshop at NeurlPS, 2022.

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter
Abbeel. Vime: Variational information maximizing exploration. Advances in
neural information processing systems, 29, 2016.

Rein Houthooft, Yuhua Chen, Phillip Isola, Bradly Stadie, Filip Wolski, OpenAl
Jonathan Ho, and Pieter Abbeel. Evolved policy gradients. Advances in
Neural Information Processing Systems, 31, 2018.

Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems.
arXiv preprint arXiv:2408.08435, 2024.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. Benchmarking large
language models as ai research agents. In NeurlPS 2023 Foundation Models
for Decision Making Workshop, 2023.

198 Bibliography

Wenlong Huang, Igor Mordatch, and Deepak Pathak. One Policy to Control
Them All: Shared Modular Policies for Agent-Agnostic Control. In
International Conference on Machine Learning, 2020.

Bernardo A Huberman, Rajan M Lukose, and Tad Hogg. An economics
approach to hard computational problems. Science, 275(5296):51-54,
1997.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. Automated machine
learning: methods, systems, challenges. Springer Nature, 2019.

Kazuki Irie, Imanol Schlag, Rébert Csordas, and Jirgen Schmidhuber. A
modern self-referential weight matrix that learns to modify itself. In Deep RL
Workshop NeurlPS 2021, 2021a.

Kazuki Irie, Imanol Schlag, Robert Csordas, and Jirgen Schmidhuber. Going
beyond linear transformers with recurrent fast weight programmers.
Advances in Neural Information Processing Systems, 34:7703-7717, 2021b.

Alekset Grigor evich lvakhnenko and Valentin Grigorévich Lapa. Cybernetic
Predicting Devices. CCM Information Corporation, 1965.

Matthew Jackson, Chris Lu, Louis Kirsch, Robert Lange, Shimon Whiteson, and
Jakob Foerster. Discovering temporally-aware reinforcement learning
algorithms. Advances in Neural Information Processing Systems, 2023.

Max Jaderberg, Wojciech M Czarnecki, lain Dunning, Luke Marris, Guy Lever,
Antonio Garcia Castafieda, Charles Beattie, Neil C Rabinowitz, Ari S Morcos,
Avraham Ruderman, Nicolas Sonnerat, Tim Green, Louise Deason, Joel Z
Leibo, David Silver, Demis Hassabis, Koray Kavukcuoglu, and Thore Graepel.
Human-level performance in 3D multiplayer games with population-based
reinforcement learning. Science (New York, N.Y.), 364(6443):859-865, 5
2019.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin
Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario
Amodei. Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Francois Fleuret.
Transformers are rnns: Fast autoregressive transformers with linear attention.
In International conference on machine learning, pages 5156-5165. PMLR,
2020.

199 Bibliography

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. In
International Conference on Learning Representations, 12 2014.

Louis Kirsch. Differentiable convolutional neural architectures for time series
classification. Bachelor’s thesis, Hasso Plattner Institute, Potsdam, Germany,
7 2017.

Louis Kirsch. Invited talk: General meta learning. Meta Learning Workshop at
Advances in Neural Information Processing Systems, 2020.

Louis Kirsch. Invited talk: General-purpose meta learning. Decision-awareness
in Reinforcement Learning Workshop at ICML, 2022.

Louis Kirsch and Jirgen Schmidhuber. Meta learning backpropagation and
improving it. Advances in Neural Information Processing Systems, 34, 2021.
2020 arXiv preprint arXiv:2012.14905.

Louis Kirsch and Jirgen Schmidhuber. Eliminating meta optimization through
self-referential meta learning. arXiv preprint arXiv:2212.14392 and First
Conference on Automated Machine Learning (Workshop), 2022a.

Louis Kirsch and Jiirgen Schmidhuber. Self-referential meta learning. In
Decision Awareness in Reinforcement Learning Workshop at ICML 2022,
2022b.

Louis Kirsch and Jiirgen Schmiduber. Learning to replace human-engineered
reinforcement learning algorithms. Swiss National Supercomputing Centre
(CSCS) Project, 2020.

Louis Kirsch and Jiirgen Schmiduber. Meta learning general purpose
reinforcement learning algorithms. Swiss National Supercomputing Centre
(CSCS) Project, 2021.

Louis Kirsch, Julius Kunze, and David Barber. Modular Networks: Learning to
Decompose Neural Computation. Advances in Neural Information
Processing Systems, 2018.

Louis Kirsch, Michael Wand, and Jirgen Schmiduber. Learning learning
algorithms. Swiss National Supercomputing Centre (CSCS) Project, 2019.

200 Bibliography

Louis Kirsch, Ignasi Clavera, Kate Rakelly, Chelsea Finn, Jane Wang, and Jeff
Clune. Beyond 'tabula rasa’ in reinforcement learning: agents that
remember, adapt, and generalize. International Conference on Learning
Representations, 2020a.

Louis Kirsch, Sjoerd van Steenkiste, and Juergen Schmidhuber. Improving
generalization in meta reinforcement learning using learned objectives. In
International Conference on Learning Representations, 2020b. 2019 arXiv
preprint arXiv:1910.04098.

Louis Kirsch, Sebastian Flennerhag, Hado van Hasselt, Abram Friesen, Junhyuk
Oh, and Yutian Chen. Introducing symmetries to black box meta
reinforcement learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 7202-7210, 2022a. 2021 arXiv preprint
arXiv:2109.10781.

Louis Kirsch, James Harrison, Jascha Sohl-Dickstein, and Luke Metz.
General-purpose in-context learning by meta-learning transformers. arXiv
preprint arXiv:2212.04458 and Workshop on Meta-Learning at NeurlPS,
2022b.

Louis Kirsch, James Harrison, Daniel Freeman, Jascha Sohl-Dickstein, and
Jirgen Schmidhuber. Towards general-purpose in-context learning agents.
Foundation Models for Decision Making Workshop at NeurlPS, 2023.

Werner M Kistler, Wulfram Gerstner, and] Leo van Hemmen. Reduction of the
Hodgkin-Huxley equations to a single-variable threshold model. Neural
Computation, 9(5):1015-1045, 1997.

Akarsh Kumar, Chris Lu, Louis Kirsch, Yujin Tang, Kenneth O Stanley, Phillip
Isola, and David Ha. Automating the search for artificial life with foundation
models. arXiv preprint arXiv:2412.17799, 2024.

Brenden Lake, Ruslan Salakhutdinov, Jason Gross, and Joshua Tenenbaum.
One shot learning of simple visual concepts. In Proceedings of the annual
meeting of the cognitive science society, volume 33, 2011.

Robert Tjarko Lange, Tom Schaul, Yutian Chen, Tom Zahavy, Valentin
Dalibard, Chris Lu, Satinder Singh, and Sebastian Flennerhag. Discovering
evolution strategies via meta-black-box optimization. In The Eleventh
International Conference on Learning Representations, 2023.

201 Bibliography

Christopher G Langton. Artificial life: An overview. 1997.

Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer,
Richie Steigerwald, DJ Strouse, Steven Hansen, Angelos Filos, Ethan Brooks,
et al. In-context reinforcement learning with algorithm distillation. arXiv
preprint arXiv:2210.14215, 2022.

Yann LeCun, Corinna Cortes, and C J Burges. MNIST handwritten digit
database. ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist,
2,2010.

Jonathan N Lee, Annie Xie, Aldo Pacchiano, Yash Chandak, Chelsea Finn, Ofir
Nachum, and Emma Brunskill. Supervised pretraining can learn in-context
reinforcement learning. arXiv preprint arXiv:2306.14892, 2023.

Shane Legg. Machine Super Intelligence. Doctoral Dissertation submitted to
the Faculty of Informatics of the University of Lugano, June 2008.

Joel Lehman and Kenneth O Stanley. Novelty search and the problem with
objectives. Genetic programming theory and practice IX, pages 37-56,
2011.

Gottfried Wilhelm Leibniz. De arte combinatoria. Leipzig, 1666. Also see his
later works on Characteristica Universalis & Calculus Ratiocinator.

Ke Li and Jitendra Malik. Learning to Optimize. In International Conference on
Learning Representations, 2017.

Xiaobin Li, Kai Wu, Xiaoyu Zhang, Handing Wang, and Jing Liu. Optformer:
Beyond transformer for black-box optimization, 2023.

Eric Liang, Richard Liaw, Philipp Moritz, Robert Nishihara, Roy Fox, Ken
Goldberg, Joseph E Gonzalez, Michael | Jordan, and lon Stoica. Rllib:
Abstractions for distributed reinforcement learning. In International
Conference on Machine Learning, pages 3053-3062, 2018.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning. In International Conference on Learning
Representations, 2016.

202 Bibliography

S Linnainmaa. The representation of the cumulative rounding error of an
algorithm as a Taylor expansion of the local rounding errors. PhD thesis,
Univ. Helsinki, 1970.

Hao Liu and Pieter Abbeel. Emergent agentic transformer from chain of
hindsight experience. arXiv preprint arXiv:2305.16554, 2023.

Chris Lu, Jakub Kuba, Alistair Letcher, Luke Metz, Christian Schroeder de Witt,
and Jakob Foerster. Discovered policy optimisation. Advances in Neural
Information Processing Systems, 35:16455-16468, 2022.

Chris Lu, Yannick Schroecker, Albert Gu, Emilio Parisotto, Jakob Foerster,
Satinder Singh, and Feryal Behbahani. Structured state space models for
in-context reinforcement learning. arXiv preprint arXiv:2303.03982, 2023.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David
Ha. The ai scientist: Towards fully automated open-ended scientific
discovery. arXiv preprint arXiv:2408.06292, 2024.

Luke Metz, Niru Maheswaranathan, Brian Cheung, and Jascha Sohl-Dickstein.
Learning Unsupervised Learning Rules. In International Conference on
Learning Representations, 3 2019a.

Luke Metz, Niru Maheswaranathan, Jeremy Nixon, Daniel Freeman, and Jascha
Sohl-Dickstein. Understanding and correcting pathologies in the training of
learned optimizers. In International Conference on Machine Learning, pages
4556-4565. PMLR, 2019b.

Luke Metz, Niru Maheswaranathan, C Daniel Freeman, Ben Poole, and Jascha
Sohl-Dickstein. Tasks, stability, architecture, and compute: Training more
effective learned optimizers, and using them to train themselves. arXiv
preprint arXiv:2009.11243, 2020a.

Luke Metz, Niru Maheswaranathan, Ruoxi Sun, C Daniel Freeman, Ben Poole,
and Jascha Sohl-Dickstein. Using a thousand optimization tasks to learn
hyperparameter search strategies. arXiv preprint arXiv:2002.11887, 2020b.

Thomas Miconi, Kenneth Stanley, and Jeff Clune. Differentiable plasticity:
training plastic neural networks with backpropagation. In International
Conference on Machine Learning, pages 3559-3568. PMLR, 2018.

203 Bibliography

Thomas Miconi, Aditya Rawal, Jeff Clune, and Kenneth O. Stanley.
Backpropamine: training self-modifying neural networks with differentiable
neuromodulated plasticity. In International Conference on Learning
Representations, 2019.

Vladimir Mikulik, Grégoire Delétang, Tom McGrath, Tim Genewein, Miljan
Martic, Shane Legg, and Pedro Ortega. Meta-trained agents implement
bayes-optimal agents. Advances in neural information processing systems,
33:18691-18703, 2020.

Geoffrey F Miller, Peter M Todd, and Shailesh U Hegde. Designing neural
networks using genetic algorithms. In /ICGA, volume 89, pages 379-384,
1989.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple
neural attentive meta-learner. In International Conference on Learning
Representations, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

Alexander Mordvintsev, Ettore Randazzo, Eyvind Niklasson, and Michael Levin.
Growing neural cellular automata. Distill, 5(2):e23, 2020.

Meredith Ringel Morris, Jascha Sohl-Dickstein, Noah Fiedel, Tris Warkentin,
Allan Dafoe, Aleksandra Faust, Clement Farabet, and Shane Legg. Levels of
agi: Operationalizing progress on the path to agi. arXiv preprint
arXiv:2311.02462, 2023.

Michael C Mozer and Sreerupa Das. A connectionist symbol manipulator that
discovers the structure of context-free languages. In Advances in neural
information processing systems, pages 863-870, 1993.

Deepak Mukunthu, Parashar Shah, and Wee Hyong Tok. Practical Automated
Machine Learning on Azure: Using Azure Machine Learning to Quickly
Build Al Solutions. O'Reilly Media, 2019.

Samuel Miller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and
Frank Hutter. Transformers can do bayesian inference. In International
Conference on Learning Representations, 2022.

204 Bibliography

Elias Najarro and Sebastian Risi. Meta-learning through hebbian plasticity in
random networks. Advances in Neural Information Processing Systems, 33:
20719-20731, 2020.

Aviv Navon, Aviv Shamsian, Idan Achituve, Ethan Fetaya, Gal Chechik, and
Haggai Maron. Equivariant architectures for learning in deep weight spaces.
In International Conference on Machine Learning, pages 25790-25816.
PMLR, 2023.

Tung Nguyen and Aditya Grover. Transformer neural processes:
Uncertainty-aware meta learning via sequence modeling. In International
Conference on Machine Learning, pages 16569-16594. PMLR, 2022.

Alex Nichol, Vicki Pfau, Christopher Hesse, Oleg Klimov, and John Schulman
Openai. Gotta Learn Fast: A New Benchmark for Generalization in RL.
arXiv preprint arXiv:1804.03720, 2018.

Scott Niekum, Lee Spector, and Andrew Barto. Evolution of reward functions
for reinforcement learning. In Proceedings of the 13th annual conference
companion on Genetic and evolutionary computation, pages 177-178,
2011.

Junhyuk Oh, Matteo Hessel, Wojciech M Czarnecki, Zhongwen Xu, Hado P
van Hasselt, Satinder Singh, and David Silver. Discovering reinforcement
learning algorithms. Advances in Neural Information Processing Systems, 33:
1060-1070, 2020.

Pedro A Ortega, Jane X Wang, Mark Rowland, Tim Genewein, Zeb
Kurth-Nelson, Razvan Pascanu, Nicolas Heess, Joel Veness, Alex Pritzel,
Pablo Sprechmann, et al. Meta-learning of sequential strategies. arXiv
preprint arXiv:1905.03030, 2019.

Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep
multitask and transfer reinforcement learning. arXiv preprint
arXiv:1511.06342, 2015.

Jack Parker-Holder, Mingi Jiang, Michael Dennis, Mikayel Samvelyan, Jakob
Foerster, Edward Grefenstette, and Tim Rocktédschel. Evolving curricula with
regret-based environment design. arXiv preprint arXiv:2203.01302, 2022a.

Jack Parker-Holder, Raghu Rajan, Xingyou Song, André Biedenkapp, Yingjie
Miao, Theresa Eimer, Baohe Zhang, Vu Nguyen, Roberto Calandra,

205 Bibliography

Aleksandra Faust, et al. Automated reinforcement learning (autorl): A survey
and open problems. Journal of Artificial Intelligence Research, 74:517-568,
2022b.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell.
Curiosity-driven exploration by self-supervised prediction. In International
Conference on Machine Learning, pages 2778-2787. PMLR, 2017.

Deepak Pathak, Chris Lu, Trevor Darrell, Phillip Isola, and Alexei A. Efros.
Learning to Control Self-Assembling Morphologies: A Study of
Generalization via Modularity. In Advances in Neural Information
Processing Systems, 2019.

Joachim Winther Pedersen and Sebastian Risi. Evolving and merging hebbian
learning rules: increasing generalization by decreasing the number of rules.
In Proceedings of the Genetic and Evolutionary Computation Conference,
pages 892-900, 2021.

Joachim Winther Pedersen and Sebastian Risi. Minimal neural network models
for permutation invariant agents. arXiv preprint arXiv:2205.07868, 2022.

Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen
Baker, Glenn Powell, Jonas Schneider, Josh Tobin, Maciek Chociej, Peter
Welinder, et al. Multi-goal reinforcement learning: Challenging robotics
environments and request for research. arXiv preprint arXiv:1802.09464,
2018.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra.
Grokking: Generalization beyond overfitting on small algorithmic datasets.
arXiv preprint arXiv:2201.02177, 2022.

Sébastien Racaniere, Théophane Weber, David Reichert, Lars Buesing, Arthur
Guez, Danilo Jimenez Rezende, Adria Puigdomenech Badia, Oriol Vinyals,
Nicolas Heess, Yujia Li, et al. Imagination-augmented agents for deep
reinforcement learning. Advances in neural information processing systems,
30, 2017.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. Learning transferable visual models from natural language supervision.
In International Conference on Machine Learning, pages 8748-8763. PMLR,
2021.

206 Bibliography

Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid
learning or feature reuse? towards understanding the effectiveness of maml.
In International Conference on Learning Representations, 2020.

Aditya Ramesh, Louis Kirsch, and Jiirgen Schmiduber. Improving
curiosity-driven exploration for reinforcement learning. Swiss National
Supercomputing Centre (CSCS) Project, 2022a.

Aditya Ramesh, Louis Kirsch, Sjoerd van Steenkiste, and Jiirgen Schmidhuber.
Exploring through random curiosity with general value functions. Advances
in Neural Information Processing Systems, 2022b.

Ettore Randazzo, Eyvind Niklasson, and Alexander Mordvintsev. MPLP:
Learning a Message Passing Learning Protocol. arXiv preprint
arXiv:2007.00970, 2020.

Sharath Chandra Raparthy, Eric Hambro, Robert Kirk, Mikael Henaff, and
Roberta Raileanu. Generalization to new sequential decision making tasks

with in-context learning. In Forty-first International Conference on Machine
Learning, 2024.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot
learning. In International Conference on Learning Representations, 2017.

Esteban Real, Chen Liang, David So, and Quoc Le. Automl-zero: evolving
machine learning algorithms from scratch. In International Conference on
Machine Learning, pages 8007-8019. PMLR, 2020.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gémez Colmenarejo,
Alexander Novikov, Gabriel Barth-maron, Mai Giménez, Yury Sulsky, Jackie
Kay, Jost Tobias Springenberg, Tom Eccles, Jake Bruce, Ali Razavi, Ashley
Edwards, Nicolas Heess, Yutian Chen, Raia Hadsell, Oriol Vinyals, Mahyar
Bordbar, and Nando de Freitas. A generalist agent. Transactions on Machine
Learning Research, 2022. ISSN 2835-8856.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic
Backpropagation and Approximate Inference in Deep Generative Models. In
International Conference on Machine Learning, pages 1278-1286, 2014.
ISBN 9781634393973. doi: 10.1051/0004-6361/201527329.

Sebastian Risi. The future of artificial intelligence is self-organizing and
self-assembling. sebastianrisi.com, 2021.

207 Bibliography

Marek Rosa, Olga Afanasjeva, Simon Andersson, Joseph Davidson, Nicholas
Guttenberg, Petr Hlubucek, Martin Poliak, Jaroslav Vitku, and Jan Feyereisl.
BADGER: Learning to (Learn [Learning Algorithms] through Multi-Agent
Communication). arXiv preprint arXiv:1912.01513, 2019a.

Marek Rosa, Olga Afanasjeva, Simon Andersson, Joseph Davidson, Nicholas
Guttenberg, Petr Hlubucek, Martin Poliak, Jaroslav Vitku, and Jan Feyereisl.
Badger: Learning to (learn [learning algorithms] through multi-agent
communication). arXiv preprint arXiv:1912.01513, 2019b.

Clemens Rosenbaum, Tim Klinger, and Matthew Riemer. Routing Networks:
Adaptive Selection of Non-Linear Functions for Multi-Task Learning. In
International Conference on Learning Representations, 2018.

Andrei A. Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume
Desjardins, James Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray
Kavukcuoglu, and Raia Hadsell. Policy Distillation. In International
Conference on Learning Representations, 2016.

Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan
Pascanu, Simon Osindero, and Raia Hadsell. Meta-Learning with Latent
Embedding Optimization. In International Conference on Learning
Representations, 7 2019.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and llya Sutskever.
Evolution strategies as a scalable alternative to reinforcement learning. arXiv
preprint arXiv:1703.03864, 2017.

Mark Sandler, Max Vladymyrov, Andrey Zhmoginov, Nolan Miller, Tom
Madams, Andrew Jackson, and Blaise Agliera Y Arcas. Meta-learning
bidirectional update rules. In International Conference on Machine
Learning, pages 9288-9300. PMLR, 2021.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and
Timothy Lillicrap. Meta-learning with memory-augmented neural networks.
In International conference on machine learning, pages 1842-1850. PMLR,
2016.

Imanol Schlag and Jirgen Schmidhuber. Gated fast weights for on-the-fly
neural program generation. In NIPS Metalearning Workshop, 2017.

208 Bibliography

Imanol Schlag, Kazuki Irie, and Jirgen Schmidhuber. Linear transformers are
secretly fast weight programmers. In International Conference on Machine
Learning, pages 9355-9366. PMLR, 2021a.

Imanol Schlag, Tsendsuren Munkhdalai, and Jiirgen Schmidhuber. Learning
associative inference using fast weight memory. In International Conference
on Learning Representations, 2021b.

Samuel Schmidgall, Jascha Achterberg, Thomas Miconi, Louis Kirsch, Rojin
Ziaei, S Hajiseyedrazi, and Jason Eshraghian. Brain-inspired learning in
artificial neural networks: a review. arXiv preprint arXiv:2305.11252, 2023.

Jirgen Schmidhuber. Evolutionary principles in self-referential learning, or on
learning how to learn: the meta-meta-... hook. PhD thesis, Technische
Universitat Miinchen, 1987.

Jirgen Schmidhuber. A possibility for implementing curiosity and boredom in
model-building neural controllers. In Proc. of the international conference
on simulation of adaptive behavior: From animals to animats, pages
222-227,1991a.

Jirgen Schmidhuber. Learning complex, extended sequences using the
principle of history compression. Neural Computation, 4(2):234-242,
1992a.

Jirgen Schmidhuber. Learning to control fast-weight memories: An alternative
to dynamic recurrent networks. Neural Computation, 4(1):131-139, 1992b.

Jirgen Schmidhuber. Steps towards self-referential neural learning: A thought
experiment. 1992c.

Jirgen Schmidhuber. Reducing the ratio between learning complexity and
number of time varying variables in fully recurrent nets. In International
Conference on Artificial Neural Networks, pages 460—463. Springer, 1993a.

Jirgen Schmidhuber. A ‘self-referential’'weight matrix. In International
conference on artificial neural networks, pages 446-450. Springer, 1993b.

Jirgen Schmidhuber. On learning how to learn learning strategies. Technical
Report FKI-198-94, Fakultat fiir Informatik, Technische Universitdt Miinchen,
1994a. Revised 1995.

209 Bibliography

Jirgen Schmidhuber. What's interesting? Technical Report IDSIA-35-97, IDSIA,
1997. ftp://ftp.idsia.ch/pub/juergen/interest.ps.gz; extended abstract in Proc.
Snowbird’98, Utah, 1998; see also Schmidhuber [2003].

Jurgen Schmidhuber. Exploring the predictable. In Advances in evolutionary
computing: theory and applications, pages 579-612. Springer, 2003.

Jurgen Schmidhuber. Godel machines: Fully self-referential optimal universal
self-improvers. In Artificial general intelligence, pages 199-226. Springer,
2007.

Jirgen Schmidhuber. Ultimate cognition a la Godel. Cognitive Computation, 1
(2):177-193, 2009.

Jurgen Schmidhuber. Powerplay: Training an increasingly general problem
solver by continually searching for the simplest still unsolvable problem.
Frontiers in psychology, 4:313, 2013.

Jirgen Schmidhuber. Jirgen schmidhuber’s homepage. The Swiss Al Lab
IDSIA, 2014. URL https://people.idsia.ch/~juergen/. Accessed:
2025-11-03.

Jirgen Schmidhuber. Deep learning in neural networks: An overview. Neural
networks, 61:85-117, 2015.

Jirgen Schmidhuber. Reinforcement learning upside down: Don't predict
rewards—just map them to actions. arXiv preprint arXiv:1912.02875, 2019.

Jirgen Schmidhuber, Jieyu Zhao, and Marco Wiering. Shifting inductive bias
with success-story algorithm, adaptive levin search, and incremental
self-improvement. Machine Learning, 28(1):105-130, 1997.

Jirgen Schmidhuber. Making the world differentiable: on using
self-supervision fully recurrent neural networks for dynamic reinforcement
learning and planning in non-stationary environments. International
Business, pages 62-81, 1990. ISSN 02624079.

Jirgen Schmidhuber. Learning to Generate Sub-Goals for Action Sequences. In
T Kohonen, K Makisara, O Simula, and] Kangas, editors, Artificial Neural
Networks, pages 967-972. Elsevier Science Publishers B.V., North-Holland,
1991b.

https://people.idsia.ch/~juergen/

210 Bibliography

Jurgen Schmidhuber. A Possibility for Implementing Curiosity and Boredom in
Model-Building Neural Controllers. In] A Meyer and S W Wilson, editors,
Proc. of the International Conference on Simulation of Adaptive Behavior:
From Animals to Animats, pages 222-227. MIT Press/Bradford Books,
1991c.

Jirgen Schmidhuber. Neural sequence chunkers. Technical Report FKI-148-91,
Institut fir Informatik, Technische Universitat Miinchen, April 1991d.

Jirgen Schmidhuber. Learning to control fast-weight memories: An alternative
to recurrent nets. Neural Computation, 4(1):131-139, 1992d.

Jirgen Schmidhuber. On decreasing the ratio between learning complexity
and number of time-varying variables in fully recurrent nets. In Proceedings
of the International Conference on Artificial Neural Networks, Amsterdam,
pages 460-463. Springer, 1993c.

Jirgen Schmidhuber. Discovering Problem Solutions with Low Kolmogorov
Complexity and High Generalization Capability. Technical Report
FKI-194-94, Fakultat fir Informatik, Technische Universitiat Miinchen, 1994b.

Jurgen Schmidhuber and] Zhao. Direct policy search and uncertain policy
evaluation. In AAAI Spring Symposium on Search under Uncertain and
Incomplete Information, Stanford Univ., pages 119-124. American
Association for Artificial Intelligence, Menlo Park, Calif., 1999.

Nicol N Schraudolph. Local gain adaptation in stochastic gradient descent. In
1999 Ninth international conference on artificial neural networks ICANN
99.(Conf. Publ. No. 470), volume 2, pages 569-574. IET, 1999.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp
Moritz. Trust region policy optimization. In International Conference on
Machine Learning, pages 1889-1897. PMLR, 2015a.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter
Abbeel. High-dimensional continuous control using generalized advantage
estimation. arXiv preprint arXiv:1506.02438, 2015b.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

211 Bibliography

Dale Schuurmans, Hanjun Dai, and Francesco Zanini. Autoregressive large
language models are computationally universal. arXiv preprint
arXiv:2410.03170, 2024.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le,
Geoffrey Hinton, and Jeff Dean. Outrageously Large Neural Networks: The
Sparsely-Gated Mixture-of-Experts Layer. In International Conference on
Learning Representations, 2017.

Hava T Siegelmann and Eduardo D Sontag. Turing computability with neural
nets. Applied Mathematics Letters, 4(6):77-80, 1991.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and
Martin Riedmiller. Deterministic policy gradient algorithms. In 37st
International Conference on Machine Learning, ICML 2014, volume 1,
pages 605-619, 1 2014. ISBN 9781634393973.

David Silver, Aja Huang, Chris] Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, loannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, et al. Mastering the game of go with deep
neural networks and tree search. nature, 529(7587):484-489, 2016.

Sims, Karl. Evolving Virtual Creatures. ACM SIGGRAPH, 1994,

Satinder Singh, Satinder Singh, A.G. Barto, A.G. Barto, Nuttapong Chentanez,
and Nuttapong Chentanez. Intrinsically motivated reinforcement learning.
18th Annual Conference on Neural Information Processing Systems (NIPS),
17:1281-1288, 2004. ISSN 1943-0604. doi: 10.1109/TAMD.2010.2051031.

Alessandro Sperduti. Encoding labeled graphs by labeling raam. Advances in
Neural Information Processing Systems, pages 1125-1125, 1994.

Aleksandar Stani¢, Dylan Ashley, Oleg Serikov, Louis Kirsch, Francesco Faccio,
Jurgen Schmidhuber, Thomas Hofmann, and Imanol Schlag. The languini
kitchen: Enabling language modelling research at different scales of
compute. arXiv preprint arXiv:2309.11197, 2023.

Kenneth O Stanley. Why open-endedness matters. Artificial life, 25(3):
232-235, 2019.

Felipe Petroski Such, Aditya Rawal, Joel Lehman, Kenneth Stanley, and Jeffrey
Clune. Generative teaching networks: Accelerating neural architecture

212 Bibliography

search by learning to generate synthetic training data. In International
Conference on Machine Learning, pages 9206-9216. PMLR, 2020.

Shyam Sudhakaran, Djordje Grbic, Siyan Li, Adam Katona, Elias Najarro, Claire
Glanois, and Sebastian Risi. Growing 3d artefacts and functional machines
with neural cellular automata. In ALIFE 2021: The 2021 Conference on
Artificial Life. MIT Press, 2021.

G Z Sun. Neural networks with external memeory stack that learn context-free
grammars from examples. In Proceedings of the Conference on Information
Science and Systems, 1991, pages 649-653. Princeton University, 1991.

Flood Sung, Li Zhang, Tao Xiang, Timothy Hospedales, and Yongxin Yang.
Learning to learn: Meta-critic networks for sample efficient learning. arXiv
preprint arXiv:1706.09529, 2017.

Richard S Sutton. Adapting bias by gradient descent: An incremental version
of delta-bar-delta. In AAAI, pages 171-176. San Jose, CA, 1992.

Yujin Tang and David Ha. The sensory neuron as a transformer:
Permutation-invariant neural networks for reinforcement learning. Advances
in Neural Information Processing Systems, 34:22574-22587, 2021.

Adaptive Agent Team, Jakob Bauer, Kate Baumli, Satinder Baveja, Feryal
Behbahani, Avishkar Bhoopchand, Nathalie Bradley-Schmieg, Michael
Chang, Natalie Clay, Adrian Collister, et al. Human-timescale adaptation in
an open-ended task space. arXiv preprint arXiv:2301.07608, 2023.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for
model-based control. In 2072 IEEE/RS] International Conference on
Intelligent Robots and Systems, pages 5026-5033. IEEE, 2012.

Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci,
Kelvin Xu, Ross Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine
Manzagol, and Hugo Larochelle. Meta-dataset: A dataset of datasets for
learning to learn from few examples. In International Conference on
Learning Representations, 2020.

Hung-Yu Tseng, Hsin-Ying Lee, Jia-Bin Huang, and Ming-Hsuan Yang.
Cross-domain few-shot classification via learned feature-wise transformation.
In International Conference on Learning Representations, 2020.

213 Bibliography

Maria Tsimpoukelli, Jacob L Menick, Serkan Cabi, SM Eslami, Oriol Vinyals,
and Felix Hill. Multimodal few-shot learning with frozen language models.
Advances in Neural Information Processing Systems, 34:200-212, 2021.

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqgi Liu, Steven Bohez,
Josh Merel, Tom Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa.
dm_control: Software and tasks for continuous control. Software Impacts, 6:
100022, 2020.

A.M. Turing. Computing Machinery and Intelligence. Mind, LIX:433-460,
October 1950.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, tukasz Kaiser, and lllia Polosukhin. Attention is all you
need. In Advances in neural information processing systems, pages
5998-6008, 2017.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, Jodo Sacramento,
Alexander Mordvintsev, Andrey Zhmoginov, and Max Vladymyrov.
Transformers learn in-context by gradient descent. In International
Conference on Machine Learning, pages 35151-35174. PMLR, 2023.

Neha Wadia, Daniel Duckworth, Samuel S Schoenholz, Ethan Dyer, and
Jascha Sohl-Dickstein. Whitening and second order optimization both make
information in the dataset unusable during training, and can reduce or
prevent generalization. In International Conference on Machine Learning,
pages 10617-10629. PMLR, 2021.

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo,
Remi Munos, Charles Blundell, Dharshan Kumaran, and Matt Botvinick.
Learning to reinforcement learn. arXiv preprint arXiv:1611.05763, 2016.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le,
and Denny Zhou. Chain of thought prompting elicits reasoning in large
language models. arXiv preprint arXiv:2201.11903, 2022.

M Wiering and] Schmidhuber. HQ-Learning: Discovering Markovian
Subgoals for Non-Markovian Reinforcement Learning. Technical Report
IDSIA-95-96, IDSIA, 1996a.

Marco A Wiering and Jirgen Schmidhuber. Solving pomdps with levin search
and eira. 1996b.

214 Bibliography

Daan Wierstra, Tom Schaul, Jan Peters, and Juergen Schmidhuber. Natural
evolution strategies. In 2008 IEEE Congress on Evolutionary Computation
(IEEE World Congress on Computational Intelligence), pages 3381-3387.
IEEE, 2008.

R J Williams. On the Use of Backpropagation in Associative Reinforcement
Learning. In IEEE International Conference on Neural Networks, San Diego,
volume 2, pages 263-270, 1988.

Ronald] Williams. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning, 8(3):229-256,
1992.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chenggi Zhang, and
S Yu Philip. A comprehensive survey on graph neural networks. [EEE
Transactions on Neural Networks and Learning Systems, 32(1):4-24, 2020.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a Novel Image
Dataset for Benchmarking Machine Learning Algorithms. CoRR, abs/1708.0,
2017.

Zhongwen Xu, Hado P van Hasselt, and David Silver. Meta-gradient
reinforcement learning. Advances in neural information processing systems,
31, 2018.

Zhongwen Xu, Hado P van Hasselt, Matteo Hessel, Junhyuk Oh, Satinder
Singh, and David Silver. Meta-gradient reinforcement learning with an
objective discovered online. Advances in Neural Information Processing
Systems, 33:15254-15264, 2020.

Jaesik Yoon, Taesup Kim, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, and
Sungjin Ahn. Bayesian model-agnostic meta-learning. Advances in neural
information processing systems, 31, 2018.

Kenny John Young, Aditya Ramesh, Louis Kirsch, and Jirgen Schmidhuber.
The benefits of model-based generalization in reinforcement learning. In
Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett, editors, Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine
Learning Research, pages 40254-40276. PMLR, 23-29 Jul 2023.

215 Bibliography

Tianhe Yu, Chelsea Finn, Annie Xie, Sudeep Dasari, Tianhao Zhang, Pieter
Abbeel, and Sergey Levine. One-shot imitation from observing humans via
domain-adaptive meta-learning. International Conference on Learning
Representations, Workshop Track, 2018.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R
Salakhutdinov, and Alexander] Smola. Deep sets. Advances in neural
information processing systems, 30, 2017.

Eric Zelikman, Eliana Lorch, Lester Mackey, and Adam Tauman Kalai.
Self-taught optimizer (stop): Recursively self-improving code generation.
arXiv preprint arXiv:2310.02304, 2023.

Jenny Zhang, Joel Lehman, Kenneth Stanley, and Jeff Clune. Omni:
Open-endedness via models of human notions of interestingness. arXiv
preprint arXiv:2306.01711, 2023a.

Yiyuan Zhang, Kaixiong Gong, Kaipeng Zhang, Hongsheng Li, Yu Qiao, Wanli
Ouyang, and Xiangyu Yue. Meta-transformer: A unified framework for
multimodal learning. arXiv preprint arXiv:2307.10802, 2023b.

Zeyu Zheng, Junhyuk Oh, and Satinder Singh. On learning intrinsic rewards
for policy gradient methods. In Advances in Neural Information Processing
Systems, pages 4644—-4654, 2018.

Andrey Zhmoginov, Mark Sandler, and Maksym Vladymyrov.
Hypertransformer: Model generation for supervised and semi-supervised
few-shot learning. In International Conference on Machine Learning, pages
27075-27098. PMLR, 2022.

Allan Zhou, Tom Knowles, and Chelsea Finn. Meta-learning symmetries by
reparameterization. In International Conference on Learning
Representations, 2021.

Allan Zhou, Kaien Yang, Kaylee Burns, Adriano Cardace, Yiding Jiang, Samuel
Sokota,] Zico Kolter, and Chelsea Finn. Permutation equivariant neural
functionals. Advances in neural information processing systems, 36, 2024.

Denny Zhou, Nathanael Schérli, Le Hou, Jason Wei, Nathan Scales, Xuezhi
Wang, Dale Schuurmans, Olivier Bousquet, Quoc Le, and Ed Chi.
Least-to-most prompting enables complex reasoning in large language
models. arXiv preprint arXiv:2205.10625, 2022.

216 Bibliography

Mingchen Zhuge, Haozhe Liu, Francesco Faccio, Dylan R Ashley, Robert
Csordas, Anand Gopalakrishnan, Abdullah Hamdi, Hasan Abed Al Kader
Hammoud, Vincent Herrmann, Kazuki Irie, et al. Mindstorms in natural
language-based societies of mind. arXiv preprint arXiv:2305.17066, 2023.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii
Khizbullin, and Jirgen Schmidhuber. GPTSwarm: Language agents as
optimizable graphs. In Forty-first International Conference on Machine
Learning, 2024.

Luisa Zintgraf, Zita Marinho, lurii Kemaeyv, Louis Kirsch, Junhyuk Oh, and Tom
Schaul. RI2x: Reinforcement learning to explore. In The Multi-disciplinary
Conference on Reinforcement Learning and Decision Making, 2022.

	Contents
	Introduction
	Automating AI research
	Background & Related work
	A description of meta-learning on multiple timescales
	Parameterizing gradient-based learning algorithms
	Updating weights through fast weight programmers
	In-context learning with black-box neural networks
	Architectures and hyperparameters
	Symbolic search spaces and programmers
	Recursive self-improvement

	Contributions and key ideas

	MetaGenRL: Meta-learning gradient-based RL algorithms thatgeneralize
	Introduction
	Preliminaries
	Meta-Learning neural objectives
	From DDPG to gradient-based meta-learning of neural objectives
	Parametrizing the objective function
	Generality and efficiency of MetaGenRL

	Related work
	Experiments
	Comparison to prior work
	Analysis

	Conclusion
	Follow-up work

	VSML: Meta-learning backpropagation and improving it
	Introduction
	Background
	Variable Shared Meta Learning (VSML)
	Meta-learning general-purpose learning algorithms from scratch
	Learning to implement backpropagation in RNNs

	Experiments
	VSML RNNs can implement backpropagation
	Meta learning supervised learning from scratch
	Robustness to varying inputs and outputs
	Varying datasets

	Analysis
	Related work
	Discussion and limitations
	Conclusion
	Follow-up work

	SymLA: Introducing symmetries to in-context reinforcement learning
	Introduction
	Preliminaries
	Reinforcement Learning
	Meta Reinforcement Learning

	Symmetries in meta-RL
	Symmetries in backpropagation-based meta-RL
	Insufficient symmetries in black-box meta-RL

	Adding symmetries to black-box meta-RL
	Variable Shared Meta Learning
	RL agent inputs and outputs
	Architecture recurrence and reward signal
	Symmetries in SymLA
	Learning / Inner loop
	Meta-Learning / Outer loop

	Experiments
	Learning to learn on similar environments
	Generalisation to unseen action spaces
	Generalisation to unseen observation spaces
	Generalisation to unseen tasks
	Generalisation to unseen environments

	Related work
	Conclusion
	Follow-up work

	GPICL: How and when general-purpose in-context learning emerges in transformers
	Introduction
	Background
	General-Purpose In-Context Learning
	Generating tasks for learning-to-learn
	Meta-learning and meta-testing

	Experiments on the emergence of general learning-to-learn
	Large data: Generalization and algorithmic transitions
	Architecture: Large memory (state) is crucial for learning
	Challenges in meta-optimization
	Domain-specific and general-purpose learning

	Related work
	Limitations
	Conclusion

	GLAs: Towards black-box & general-purpose in-context learning agents
	Introduction
	Meta-learning general-purpose in-context learning agents
	Experiments
	Conclusion

	FME: Eliminating meta-optimization and recursive self-improvement
	Introduction
	What is needed for recursive self-improvement (RSI)?
	Partially or fully self-referential architectures
	Substrates for RSI
	How to construct a fully self-referential architecture

	Method: Fitness Monotonic Execution
	Experiments
	Related work
	Discussion
	Conclusion

	What's next: Leveraging LLMs to automate AI research
	Conclusion
	Appendix on MetaGenRL
	Additional results
	All training and test regimes
	Stability of learned objective functions
	Ablation of agent population size and unique environments

	Experiment details
	Neural objective function architecture
	Meta training
	Baselines

	Appendix on VSML
	Derivations
	Additional experiments
	Learning algorithm cloning
	Meta learning from scratch

	Other training details
	Learning algorithm cloning
	Meta learning from scratch

	Other relationships to previous work
	VSML as distributed memory
	Connection to modular learning
	Connection to self-organization and complex systems

	Appendix on SymLA
	Bandits from wang2016learning
	Hyperparameters
	SymLA architecture
	Meta learning / outer loop
	Generalisation to unseen environments

	Scalability and complexity
	Code snippet

	Appendix on GPICL
	Summary of insights
	Limitations
	The transition to general learning-to-learn
	Architectural details and hyperparameters
	Experimental details
	Additional experiments

	Appendix on FME
	Implementation details

	List of contributions
	Bibliography

