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Contemporary neural network architectures are several orders of magnitude smaller than a human
brain. But we need extraordinary large neural networks if knowledge about the entire interaction
history of a reinforcement agent should be distilled into the network. In the simplest case, this
may be a policy to gain maximum reward in a certain environment. Much larger networks will
be required if predictive understanding about the environment should be included, such as a
detailed model of the environment. This predictive understanding helps to solve new, currently
unknown, tasks beyond learning to maximize the reward on the current task. Thus, even if we
could find the right learning algorithm that exhibits similar behavior to biological intelligence,
it is unlikely that current small neural networks would scale to human intelligence.

Furthermore, the current deep learning revolution can in large parts be attributed to larger neural
networks and increased data set sizes [11]. Hence, it is conceivable that larger neural network
architectures that learn from large amounts of data from many different tasks already exhibit
intelligent behavior without much further development of new learning algorithms and inductive
biases. We conclude that our goal should be to explore the limit of extremely large or even
infinitely sized neural networks. With current GPU hardware, we quickly reach computational
and memory limits [15, 4, 19]. In this short report, we will explore how sparsity and conditional
computation can help us to get around these issues.

1 The Importance of Sparsity

This section describes how sparsity can help us to scale artificial neural networks. Sparsity refers
both to the connectivity between two layers, i.e. zero values in the weight matrix, as well as
zeros in the activations of each layer. We differentiate between unconditional and conditional
sparsity: Unconditional sparsity is independent of the input, while conditional sparsity describes
sparsity that occurs for a specific input.

The neuroscientific argument. While the human brain has around 150 trillion synapses [16]
our largest neural networks only achieve a few billion parameters at most [1]. Furthermore,
a single synapse is known to be more complex than a single parameter in an artificial neural
network. The problem with training really large neural networks lies both in memory and
compute. The number of parameters increases both memory and compute resources requirements
linearly. In the case of neurons, the growth is even quadratic. This is very unlike the brain,
where connectivity is very sparse. In the brain, due to the sparse connectivity, computation
would scale only linearly in the number of neurons instead of quadratically. Furthermore, energy
is mostly required proportional to the number of times a neuron fires. If a neuron does not fire,
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this is similar to having a zero activation in an artificial neural network. Contemporary GPU
architectures cannot leverage this kind of sparsity.

The evidence in existing neural networks. Existing neural networks are already automat-
ically quite sparse. This includes weights that have very small (negligible) magnitudes and in
particular zero activations due to the ReLU non-linearity. Furthermore, we often pre-specify a
sparsity inductive bias in the form of CNNs that can be computationally leveraged on GPUs but
describes a fixed sparsity pattern that can not be learned.

Sparsity as regularization. It can be shown that employing L1-regularization or other
Bayesian priors on model parameters can incur additional sparsity [13, 7, 15, 12, 2]. This spar-
sity is already an interesting research area because it tends to increase generalization. Thus,
we can increase the value of sparsity even further by introducing compute and memory bene-
fits. Currently, computational benefits are very limited. We have to rely on structured sparsity
such as [15, 21] where entire neurons or convolutional filters are removed to gain computational
speedups. Furthermore, these speedups only apply after pruning which cannot be leveraged
during training.

1.1 Near-term Solutions

In the near-term we will probably not be able to achieve a computational complexity class such
as it can be found in the brain where energy consumption is proportional to neuron firing.
Nevertheless, there are several approaches we might want to pursue.

Modularization. In the brain, we can observe that different areas have different function-
ality [18]. We could enforce a similar structure by portioning our computational model into
modules - entities that compute different functions depending on the input. In this manner,
we can actually omit entire non-relevant connections in the neural network. Thus, this method
allows leveraging both unconditional, as well as conditional sparsity. For instance, we proposed
a learning algorithm that induces this modularization without any regularization [8]. On the
downside, this requires the task to be actually partitionable into such modules and an overhead
in terms of a controller that has to select modules and the training of the architecture. This
means this method is not necessarily applicable to all problems.

Row Sparsity. If the activations are highly sparse, such as in the case of ReLU activations,
we can simply prune entire rows from the weight matrix for each switched off unit. It is easy
to see that this does neither change the value of the function nor the gradients w.r.t. to these
pruned weights. We can further encourage this behavior by employing a sparsity regularizer (e.g.
L1) that further improves generalization. If only a constant number of units is active for any
given datapoint in each layer, then computing the feed-forward activations and gradients for this
datapoint is only linear in the number of neurons N per layer compared to the O(N2) compute
necessary to perform dense-matrix-matrix multiplications. We are currently investigating this
approach further and will publish the results.

Block-Sparsity. A very exciting new development is the idea of block-sparsity GPU ker-
nels [4, 14]. It allows partitioning a weight matrix into several small square-chunks. The matrix
multiplication can then be efficiently executed in parallel as before, with the additional benefit
that chunks that have entirely zeros only do not have to be evaluated. Research has shown that
this may lead to speedups of several magnitudes. Current techniques to generate such sparsity
patterns rely heavily on heuristics [4, 14]. Future work on principled Bayesian methods that can
lead to efficient sparsity patterns is a very interesting research direction. On the downside, this
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technique does currently only apply to the weight matrix and not the highly sparse activations.
Furthermore, it only considers unconditional sparsity.

1.2 Long-term Solutions

In the long term, we should aim at getting as close as possible to the computational model in
the brain. This means we require new hardware and software solutions.

Hardware and software solutions. There has been an interesting development on gains
in memory usage and evaluation compute through compression algorithms and other hardware
and software related changes [19, 20, 17]. This includes the development of FPGAs for deep
learning and other new hardware architectures that can directly leverage sparsity [10]. It is
entirely feasible that this would allow increasing the effective size of neural networks by several
magnitudes. Unfortunately, due to hardware-related long development cycles, it is unlikely to
see these approaches very soon.

Finally, the brute-force solution is to wait for Moore’s law to catch-up. That said, Moore’s
law has stagnated over the last few years (we reach physical limitations in terms of scale) [9].
Furthermore, the brain achieves efficient computation with less than 20 Watts of power [5, 6].
There should be a better approach than requiring large clusters to imitate simple human-like
intelligence.

1.3 The Batching Issue

Current machine learning methods rely heavily on mini-batching to estimate gradients [3]. If
computation depends on each sample, there will be fewer gradients per parameter in a given
mini-batch, thus increasing the noise in the overall gradient. Possible alternatives are either
increasing the batch size, improved online learning methods or smart algorithms that can group
data such that similar data is executed together. The latter may lead to more problems though,
as the gradients would rely on non-iid data.
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