
Bachelor’s Thesis

Differentiable Convolutional Neural
Network Architectures for Time Series

Classification
Differenzierbare Convolutional Neural Network Architekturen

für Zeitreihenklassifikation

Louis Kirsch
louis.kirsch@student.hpi.de

Submitted on July 20, 2017
Knowledge Discovery and Data Mining Group

Hasso Plattner Institute, Germany

Supervisors
Arvind Kumar Shekar

Prof. Dr. Emmanuel Müller

louis.kirsch@student.hpi.de




Abstract

In the last few years, deep learning revolutionized many areas of machine learning.
One very important area is time series classification. Time series are produced
everywhere in real world scenarios, such as industrial or medical sensor data. The
success in deep learning is largely based on training through backpropagation.
Nevertheless, backpropagation can only be applied to weights training, since archi-
tecture construction is not differentiable. As a result, state of the art architectures
are commonly handcrafted. This thesis addresses the problem of automatically
designing architectures for time series classification in an efficient manner. Exist-
ing solutions for constructing architectures algorithmically, such as evolutionary or
reinforcement learning methods, are much more computationally expensive. We
address the problem by introducing a regularization technique for convolutional
neural networks (CNNs) that enables joint training of network weights and ar-
chitecture through backpropagation. Skip connections and a special two-phased
training are introduced to enable a stable optimization. We evaluate the approach
on the UCR archive, yielding competitive results compared to state of the art in
time series classification, and outperforming on datasets where handcrafted archi-
tectures do not match the complexity of the dataset.

iii





Contents

Contents

1 Introduction 1

2 Related work 3
2.1 Time series classification . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Learning the architecture of neural networks . . . . . . . . . . . . . 4

3 Background 5
3.1 Fully connected neural networks and convolutional neural networks 5
3.2 Differentiable number of neurons in recurrent neural networks . . . 7
3.3 FCN: The current state of the art in time series classification . . . 8

4 Differentiable CNN architectures 11
4.1 Initial architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Replacing neurons with channels . . . . . . . . . . . . . . . . . . . 12
4.3 Independent switches and the penalty function . . . . . . . . . . . 13
4.4 Training stop criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.5 Mutation phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.6 Illustration of the DiffCNN . . . . . . . . . . . . . . . . . . . . . . 20
4.7 Switched-on initialization . . . . . . . . . . . . . . . . . . . . . . . 20
4.8 Two-phased learning . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.9 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Experiments on UCR datasets & Discussion 25
5.1 Experiment settings . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3 Adapting network complexity . . . . . . . . . . . . . . . . . . . . . 28
5.4 Necessity of switched-on initialization . . . . . . . . . . . . . . . . . 30
5.5 Necessity of two-phased learning . . . . . . . . . . . . . . . . . . . 31
5.6 Experimental choice of penalty factor . . . . . . . . . . . . . . . . . 32
5.7 Training behavior and duration . . . . . . . . . . . . . . . . . . . . 33
5.8 Complexity and scalability . . . . . . . . . . . . . . . . . . . . . . . 35
5.9 Limitations of the DiffCNN . . . . . . . . . . . . . . . . . . . . . . 35

6 Conclusion & Future work 38

A Supplementary material for experiments 39

References 45

v





1 Introduction

Supervised deep learning achieved super-human performance on many tasks in
recent years. Recurrent neural networks, specifically LSTMs [1], revolutionized
sequence to sequence modeling. Deep convolutional neural networks (CNNs) in-
troduced by LeCun [2] lead to better image classification, segmentation and sig-
nal processing. Nevertheless, state of the art architectures are commonly hand-
crafted [3,4,5,6], namely choosing the type of layers to use, the number of neurons,
the depth of the network and possible preprocessing. In the case of CNNs, more pa-
rameters emerge: This includes the number of convolutional layers and the stride,
kernel size, and number of output channels for each of them. Max or average
pooling can be used and the number of fully connected layers and their number of
neurons need to be chosen.

Often those architectures and hyperparameters are chosen manually, based on
the researcher’s experience and intuition. As an alternative in some cases, grid
search is applied, a very simple form of determining the right hyperparameters
and architecture. This search is not guided by heuristics and is therefore very
expensive.

Determining the weights of a neural network is an optimization problem that is, in
the meanwhile, almost always solved by applying gradient descent in the form of
backpropagation. But we rarely consider that determining neural network archi-
tectures and other hyperparameters are just an instance of optimization as well.
Architectures are not differentiable, thus very recently Real et al. [7] applied evo-
lutionary methods and Zop et al. [8] proposed an approach based on reinforcement
learning, producing new state of the art architectures. Typical for evolutionary
methods the former approach requires many trial and error mutations with no
guidance except a population of already well-working architectures. Therefore,
this method needs to scale to many hundred computing instances that mutate and
train an existing population member. The latter approach needs to train an entire
recurrent neural network that learns to output the architecture of another network,
requiring large computational resources as well. Based on the idea that architec-
tures can be designed to be differentiable to some extent, Miconi [9] showed that
the number of neurons within a layer can be controlled using a specifically designed
regularizer. While it was demonstrated that the network complexity can be con-
trolled in such way, the approach was limited to recurrent neural networks and was
only run on a self-designed simple sequence prediction problem. It was not tested
on any commonly used benchmark or compared to state of the art handcrafted
architectures. Also, the depth of the network, a very significant hyperparameter,
was not optimized.

For the application of time series classification (TSC), we propose the differentiable

1



1 Introduction

convolutional neural network architectures (DiffCNN) that eliminate the necessity
of handcrafting architectures. In contrast to state of the art, the DiffCNN is purely
based on differentiation. We make the following contributions:

• Make all architecture parameters for TSC differentiable that are hard to
manually specify.

• Require only slightly more training time than conventional CNN training
with fixed network architectures.

• Achieve competitive results on the UCR archive [10] benchmark.

• Outperform on datasets where a handcrafted architecture, designed for a
range of datasets, does not match the inherent complexity of the individual
dataset.

TSC is the task of assigning a time series one category of a fixed set. We define a
set of time series S containing N time series si for i ∈ [ 1 .. N ]. Each si is a real
valued vector si ∈ Rl with length l. We assign every si a class label yi ∈ C where
C is the set of all classes in the dataset. We partition S into a training set T ⊂ S
and a test set E ⊂ S of sizes NT and NE respectively. The task of time series
classification is to fit a model M on T that can assign each time series si ∈ T a
class label M(si) = ŷi so that ŷi = yi for maximally many i. This classifier is then
evaluated on the test set E to determine its generalization performance.

The thesis is structured as described in the following. Section 2 presents related
work both in the field of TSC, as well as neural network architecture optimization.
In the first part of section 3 we shortly introduce fully connected and convolutional
neural networks. Then, in the second part, we define how Miconi [9] regularized
recurrent neural networks to make the number of neurons per layer differentiable.
In the third part we present the current state of the art in TSC. Based on that,
in section 4, we introduce our concept of differentiable CNN architectures and
how those are applied to TSC. We present several required training modifications
to enable a stable optimization of the DiffCNN. Section 5 then deals with the
experiments on several datasets, the advantages and limitations of the approach,
and experimental justifications for the proposed algorithm design. Additionally,
results are discussed and analyzed. Finally, in section 6, the thesis is summarized
and possible future extensions are proposed.

2



2 Related work

Both TSC, as well as automatically designing neural network architectures have
been studied separately before. First, we will identify related solutions to TSC.
Then, existing solutions to architecture optimization are presented.

2.1 Time series classification

Time series classification is an extensively studied field with many different ap-
proaches to the problem. The field can be partitioned into 4 areas: Distance,
feature, ensemble and deep learning based solutions.

Distance based algorithms represent the simplest form of algorithms, directly op-
erating on the time series. For instance, time series can be classified by euclidean
distances to the nearest neighbors. An efficient approach to k-nn classification of
time series is the use of dynamic time warping (DTW) [11]. Feature based methods,
on the other hand, extract numerous features that are then used in conjunction
with a classifier. Among the feature based algorithms is TSBF [12]. It randomly
selects subsequences of the time series to classify and extract features thereof.
Later all features are assembled to a bag of features that are fed to a random
forest classifier that makes the final prediction. The Bag-Of-SFA-Symbols (BOSS)
classifier [13] extracts words using a discrete fourier transform (DFT) and forms a
distribution of words after discretization using multiple coefficient binning (MCB).
A distance measure is defined and nearest neighbor classification is performed. The
BOSSVS [14] adapts BOSS with a vector space model based on tf-idf in order to
reduce the computational complexity. Ensemble based methods include PROP [15]
that is an ensemble of elastic distance measures. The COTE [16] ensemble includes
35 classifiers from the time, frequency, change and shapelet domains. Recently
deep learning techniques were applied to TSC in the form of CNNs, outperforming
previous methods on the majority of UCR datasets [10]. The MCNN [5] applies
a wide range of transformations as a preprocessing step to classify datasets where
little data is available. This includes scaling, smoothing and sub-sampling. The
FCN [6] demonstrated that a well-handcrafted architecture that relies on global
average pooling instead of plenty preprocessing can outperform the MCNN. In this
thesis, we will introduce a new deep learning approach that replaces handcrafted
architectures with architectures learned by differentiation while being competitive
to state of the art TSC.

3



2 Related work

2.2 Learning the architecture of neural networks

The idea of pruning neurons in an existing neural network dates back to ‘Optimal
Brain Damage’ [17]. It is based on calculating a weight saliency measure using
second derivatives but does not include adding new neurons or layers. Recently
the problem of pruning neurons to reduce network complexity was scaled to to-
day’s larger deep learning problems [18]. But the problem of designing the initial
architecture was once more not addressed. Biologically inspired algorithms include
the design of neural networks by genetic algorithms. Kitano [19] proposes to use
a graph grammatical encoding to design neural networks. Often the weights are
trained using backpropagation and the architecture is adapted using evolutionary
methods [20]. In 2017 two new papers explored evolutionary [7] and reinforcement
learning [8] methods. While these methods generated entirely new architectures
that redefined the state of the art, they require large computational resources.
Additionally, using two methodologies, such as backpropagation for weights and
evolution for the architecture, results in the development of a dual representation
scheme. One possible alternative is training and constructing the entire network
using evolutionary methods [21]. This has the downside of losing all heuristic
benefits of backpropagation. The other alternative is using backpropagation for
both weights and architecture. Miconi [9] introduced a concept based on L1-
regularization that allows both adding new neurons, as well as pruning them solely
using backpropagation. He applied the idea to simple recurrent neural networks,
but the number of layers is still fixed.

In this thesis, we omit evolutionary methods entirely, adapting both the architec-
ture and the weights using backpropagation while still being able to add and remove
layers from the network. This allows leveraging the recent success of deep learning
with backpropagation and modifying the architecture in the same methodology
while not relying on time and computational resource consuming evolutionary ap-
proaches. The properties of the different approaches can be found in Table 1.

Table 1: A comparison of different methods for architecture manipulation

By backpropagation

Algorithm Pruning Growing Depth TSC Training Architecture

[17] [18] X X X
[9] X X X X

[7] [8] X X X (X)1 X
[19] [20] X X X X
[21] X X X

This work X X X X X X

1It was applied to CNNs but not TSC and thus could be easily transferred

4



3 Background

This section shortly introduces concepts from Deep Learning, Miconi’s previous
work on a differentiable number of neurons and TSC.

3.1 Fully connected neural networks and convolutional neural
networks

The deep learning approach to TSC is to derive a composite function fnn that maps
the input x(1) to a valid probability distribution over the classes C by stacking
several layers. Stacking refers to the process of applying several layers on top of
each other, generating the neural network. In a neural network with depth d, the
ith layer’s input for i = 1, . . . , d is defined as x(i). Each layer is defined by its
function f (i). The function fnn is defined as the composed function of all layer
functions f (i) of a neural network. In this thesis, we are going to rely on two
different kinds of layers that constitute our generated architectures for TSC.

The first type is the fully connected layer: It is usually used when the input has
no time component but I different dimensions. Let x(i) ∈ RB×I be the layer’s
input where B is the batch size and I is the number of input neurons. A batch
is the concatenation of multiple samples that are transformed by the network in a
single calculation pass. We multiply this input with a weight matrix w(i) ∈ RI×O
where O defines the desired number of output neurons. Additionally, we add a
bias b(i) ∈ RO and apply an activation function σ. The fully connected layer is
therefore given by

ffc(x
(i)) = σ(x(i) × w(i) + b(i)) (1)

The operation yields the matrix x(i+1) ∈ RB×O, which is also called the activations
of layer i. Intuitively, every output unit is a linear combination of all input units.
The variables I and O are defined for each layer i, for simplicity we omit the index
in I(i) and O(i).

The second type is the convolutional layer: It applies a convolution with a flipped
kernel, also known as cross-correlation, on a discrete input signal x(i). This signal
includes a time component, therefore any time series s ∈ S can be fed into a
convolutional layer. If the input time series is univariate we have exactly I = 1
input channels while multivariate time series can be mapped to multiple channels
I > 1. On the signal x(i) ∈ RB×L×I with L being the length of the signal and I
the number of input channels, the convolutional layer is defined as

fconv(x
(i))t = σ

( K∑
k=1

x
(i)
:,k+t−1w

(i)
k

)
for t = 1, . . . , L (2)

5



3 Background

where w(i) ∈ RK×I×O is the kernel with size K applied on x(i) with I input
channels, yielding x(i+1) ∈ RB×L×O with O output channels. The output signal’s
number of channels is determined by the kernel that is applied. Both the input
and output signal have the same length L by padding the input signal accordingly.
This is called ‘same padding’ and is used throughout this thesis. The variables K,
L, I and O are specific to every layer, the index (i) is omitted.

Most machine learning problems require a non-linear transformation to the input
x(1) for a correct class mapping. Since matrix multiplication and convolution
only apply a linear transformation, we include the activation function σ. This so
called non-linearity is used in order to approximate non-linear functions with the
composite function fnn. In the scope of this thesis we rely on the commonly used
rectified linear unit (ReLU) [22] defined as

σReLU (z) = max(0, z) (3)

The output of the top-most, the dth layer, forms a probability distribution over
the different classes. In order to enforce a valid distribution we utilize the softmax
function instead of the ReLU. The softmax function over classes C is given by

σsoftmax(z)k =
ezk∑C
c=1 e

zc
for k = 1, . . . , C (4)

Figure 1 gives an example of a convolutional architecture of depth four. Given
the input, we first apply a convolution, then a ReLU, then a second convolution,
another ReLU and finally a fully connected layer followed by a softmax function.

Input Convolution Convolution Fully connected

Figure 1: An example neural network architecture for TSC of depth four

We furthermore define a loss function that represents the training objective. In
the case of TSC we employ the cross-entropy given by

H(p, q) = −
∑
c∈C

p(c) log q(c) (5)

where p and q are the true discrete probability distribution over classes C and the
predicted distribution respectively. The predicted distribution q is generated by
the composite function fnn. The entire loss function over a batch of B samples is
then defined as

l =
1

B

B∑
b=1

H(pb, qb) (6)

This loss is finally differentiated using backpropagation [23] and gradient descent is
applied to minimize the loss. A complete introduction to CNNs and deep learning
is given by Goodfellow et al. [24].

6



3.2 Differentiable number of neurons in recurrent neural networks

3.2 Differentiable number of neurons in recurrent neural networks

Miconi proposed a method [9] to make the complexity of a recurrent neural network
differentiable by modifying the number of output neurons per layer during gradient
descent. He showed that more complex problems require a bigger number of output
neurons, while simpler problems reduce the number of neurons to a minimum.
Neurons can be switched on or off by changing its outgoing weights. The magnitude
of the outgoing weights ω(i)

j of the jth neuron in layer i is defined by

ω
(i)
j =

∑
k

|w(i+1)
j,k | (7)

That means the following layer’s weights define the outgoing weights of the neurons.
Figure 2 visualizes the outgoing weights of a neuron in layer 2. If ωj = 0 for any
neuron j, then the neuron’s output for the following layer is guaranteed to be zero
and the neuron could, therefore, be removed from the network. In that sense, ωj
describes the relevance of the neuron.

Softmax layer

Convolution
channels-out = 128

kernel-size = 3

batch normalization

ReLU

Convolution
channels-out = 256

kernel-size = 5

batch normalization

ReLU

Convolution
channels-out = 128

kernel-size = 8

batch normalization

ReLU

Input

Global pooling

Layer 1 Layer 2 Layer 3

Layer 1 Layer 2 Layer 3

Figure 2: Two fully connected layers following an input layer with a neuron in layer
2 highlighted in orange. The outgoing weights are indicated in red, and
defined by the weights w(3) of layer 3.

In order to add or remove neurons, he introduced a regularizer to the loss function
that penalizes the magnitude of outgoing weights. The magnitude of outgoing
weights is also known as the L1 norm. In order to update the definition of the loss
function for TSC from Equation 6, we now introduce a penalty given by

P (w) =
∑
i

∑
j

|ω(i)
j | (8)

7



3 Background

with w(i) being the weights employed in layer i. Thereby, the new, regularized loss
function is updated to

lreg = αP (w) +
1

B

B∑
b=1

H(pb, qb) (9)

The new hyperparameter α balances the two training objectives of minimizing
the cross-entropy, while also minimizing the magnitude of outgoing weights of
the neurons. It was shown that L1 regularization leads to sparsity [25], thereby
switching some neurons permanently off through small magnitudes of outgoing
weights. This effectively leads to a network architecture that solves the task with
as little switched-on neurons as possible.

While the new loss function allows switching off neurons by setting its outgoing
weights close to zero, no new neurons can be added so far. To solve this, a variable
tinactive = 1 and a threshold tdel = 0.05 are used that govern the pruning and
growing of neurons. Let ninactive be the number of inactive neurons in a layer
i. Whenever less than tinactive neurons are inactive in that layer, a new neuron is
added. Likewise, whenever there are more than tinactive neurons inactive, ninactive−
tinactive of those are pruned away. Due to the approximate nature of gradient
descent, the magnitude of the outgoing weights of a neuron may never reach exactly
zero. Thus, we consider outgoing weights ωj <= tdel to represent switched off
neurons.

Putting together the regularized loss function and thresholding, we yield a frame-
work that can change the number of neurons in each layer only by differentiating
and optimizing using gradient descent.

3.3 FCN: The current state of the art in time series classification

While state of the art in TSC was previously dominated by feature extraction
methods, the current state of the art approaches include mostly deep learning
methods. The state of the art method on the UCR datasets [10], one of the
most prevalent repositories for time series classification, is the fully convolutional
network (FCN) as introduced by Wang et al. [6]. It features a very simple, but
fixed architecture as seen in Figure 3. Except for the final softmax layer, the
architecture is fully convolutional and therefore less prone to overfitting. Instead
of using a fully connected layer before the softmax layer it employs global average
pooling [26]. This means reducing the time axis to its mean before feeding the
activations to the softmax layer, giving the added benefit of being able to use
arbitrary-length time series as input.

8



3.3 FCN: The current state of the art in time series classification

Softmax layer

Convolution
channels-out = 128

kernel-size = 3

batch normalization

ReLU

Convolution
channels-out = 256

kernel-size = 5

batch normalization

ReLU

Convolution
channels-out = 128

kernel-size = 8

batch normalization

ReLU

Input

Global pooling

Figure 3: The FCN architecture that currently outperforms all other classifiers on
the UCR archive

Batch normalization [27] is applied as a reparameterization technique to improve
convergence during training, dealing with the problem of training deep neural net-
works. During gradient descent, each parameter is updated under the assumption
that all other parameters are kept constant. This simplification is problematic
when weight updates increase or decrease the variance σ2 or the mean µ of acti-
vations significantly. To prevent this, activations a of a layer are normalized per
batch before the non-linearity is applied:

â =
a− µ
σ

(10)

The variables µ and σ are defined per batch of size B during training time as given
in the following

µ =
1

B

B∑
i=1

ai,: (11)

9



3 Background

σ =

√√√√ 1

B

B∑
i=1

(a− µ)2i,: (12)

During test time, running averages of µ and σ are used. This normalization reduces
the expressive power of the neural network. That means fewer functions can be
approximated with the same network after batch normalization is introduced. To
counteract this, we can reparameterize the normalized activations â, while keeping
the benefits described above. The reparameterization is given by

ã = γâ+ β (13)

where γ scales the variance of the activation and β changes the mean. Note that
when calculating the activations a we can omit the bias b, as it becomes redundant
with the new parameter β. When we refer to the bias in the context of batch
normalization, we refer to β.

10



4 Differentiable CNN architectures

In this section, we propose to extend the work of Miconi [9] for TSC. Instead of
controlling network complexity by the number of neurons in a layer, the number of
output channels will be influenced by gradient descent. We propose the DiffCNN.
A CNN for TSC that can learn its own architecture using gradient descent jointly
with weights training. The DiffCNN has the novel ability to change the depth of
its architecture, allowing to construct an entire network from scratch. We leverage
insights fromWang [6] to create a framework for TSC that can be readily applied to
many TSC problems with little hyperparameter tuning. Furthermore, we present
several training adaptations for the introduced differentiable CNN architectures
that are required for a stable optimization. Important introduced hyperparameters
are listed in the Appendix A in Table 2.

4.1 Initial architecture

In order to be suitable for TSC, we define an initial architecture as seen in Fig-
ure 4. It represents the minimally viable solution and can then be grown and later
pruned as necessary. Its basic structure is derived from [6]: A single convolution
with a fixed number of initial output channels Oinitial is average pooled globally
and the resulting activations are combined linearly in the softmax layer to then
model a final probability distribution over the classes. Additionally, we use batch
normalization and the ReLU as an activation function.

Softmax layer

Convolution
channels-out = Oinitial

batch normalization

ReLU

Input

Global pooling

Figure 4: The initial architecture as a minimally viable solution for TSC

11



4 Differentiable CNN architectures

Similar to [6] we z-normalize the input time series using the mean and variance of
the training set and do not apply any further preprocessing. Due to the univariate
nature of the time series we defined in section 1, the number of output channels of
the input layer with i = 1 is O(1) = 1, while the number of input channels of the
following first convolution with i = 2 is therefore also I(2) = 1.

4.2 Replacing neurons with channels

First, we aim to simplify the activity of a neuron by introducing a small adjustment
to Miconi’s original definition from Equation 8. Instead of defining the activity of a
neuron of layer i by its outgoing weights, we use the incoming weights of the same
layer as shown in Figure 5. This has the benefit of being able to define whether an
output neuron of a specific layer is active, just by referring to this layer’s weights
instead of taking into account all layers that consume the activations. Therefore,
the sum of the neuron’s incoming weights, and subsequently its activity, is given
by

ω̂
(i)
j =

∑
k

|w(i)
k,j | (14)

This change does not affect the optimization objective in any way. We will illustrate
this fact with the following example of deactivating a neuron. The highlighted
neuron in Figure 5 is only reachable by its incoming weights (left) and outgoing
weights (right). Either we set all incoming weights to zero, thus deactivating all
information flowing to the neuron, or we set all outgoing weights to zero, thus
deactivating all information leaving the neuron. In both cases, the neuron is only
effective if both incoming and outgoing weights deviate from zero.

Also, instead of using fully connected layers that are used recurrently we aim to
change the complexity of convolutional layers. Convolutional layers are specified
by their number of output channels instead of number of output neurons. As given
previously, the weights of a convolutional layer are defined as w ∈ RK×I×O with
K being the kernel size, I being the number of input channels and O being the
number of output channels. Similarly to controlling the number of output neurons
in a fully connected layer, we only need to adapt O to change the expressive power
of the layer. Accordingly, we define the activity of an entire output channel j by

ω̃
(i)
j =

∑
k

∑
l

|w(i)
k,l,j | (15)

The new penalty function is therefore defined as

P̃ (w) =
∑
i

∑
j

|ω̃(i)
j | (16)

12



4.3 Independent switches and the penalty function

Softmax layer

Convolution
channels-out = 128

kernel-size = 3

batch normalization

ReLU

Convolution
channels-out = 256

kernel-size = 5

batch normalization

ReLU

Convolution
channels-out = 128

kernel-size = 8

batch normalization

ReLU

Input

Global pooling

Layer 1 Layer 2 Layer 3

Layer 1 Layer 2 Layer 3

Figure 5: The same fully connected layers as presented previously with the incom-
ing weights of a neuron highlighted in blue

4.3 Independent switches and the penalty function

While the L1-norm of the incoming weights of a channel in a convolutional layer
can be used as a measure of relevance of this specific channel, the weights itself
are also subject to a training objective that tries to convolve the input to detect
certain patterns. During gradient descent, therefore we change both the relevance
of the channel and the transformation it applies with the kernel weights. Instead,
we would prefer to have a single scalar that defines the relevance of the entire
channel that can be optimized independently of the kernel weights. We propose
to introduce such a switch variable. With the introduction of batch normalization
we have already obtained a suitable reparameterization. In Equation 13 we scaled
the entire normalized activations â by γ. In the case of a convolution we can
define γ ∈ RO as a vector that scales each output channel of a layer with a scalar.
We define such a γ(i) for every convolutional layer i, but omit the layer index for
notational simplicity. Whenever γj of an output channel j is close to zero, the
activations of the entire channel is close to zero for all inputs. Therefore, γj acts
as a switch that controls the relevance of an output channel j.

The next obvious step would be to replace our penalty function of Equation 16
with

P̃ (γ) =
∑
i

∑
j

|γ(i)j | (17)

While this would work, this means that the output channels are linearly more pe-
nalized with their scale γ. Instead, we would like to have a measure that penalizes
the number of active channels, independent of the scale. Therefore we introduce a

13



4 Differentiable CNN architectures

new penalty function loosely based on [28]

Pweigend(γ) =
∑
i

[
i
∑
j

(γ
(i)
j )

2

κ+ (γ
(i)
j )

2

]
(18)

This ensures that scales γj close to zero are assigned a small penalty while grow-
ing scales converge to a penalty of one. Additionally, we introduced the factor
i, the layer index, that scales the penalty linearly with the depth of the layer.
This expresses the prior that we favor fewer layers with more channels over very
deep networks that are more expensive to train while not yielding any advantage
in reducing the cross-entropy. Equation 18 introduced a new parameter κ that
defines the exact form of the penalty function. We set this parameter by introduc-
ing another constraint to the function. When the magnitude of a scale is exactly
|γj | = 0.5, half of its initial scale of |γj | = 1, we would like to impose a penalty
exactly between the theoretical minimum of penalty = 0 and the limiting max-
imum of penalty = 1. This ensures two aspects that can be seen in Figure 6.
Firstly, between scale magnitudes from zero to one we obtain similar penalties to
the original linear penalty function. Secondly, the gradient of the function at its
initial scale is big enough to outweigh the cross-entropy gradient in the case of an
unnecessary channel. Therefore we yield

0.52

κ+ 0.52
= 0.5 (19)

⇐⇒ κ = 0.52 (20)

The new loss function we use in this approach is now defined as

ldiffcnn = αPweigend(γ) +
1

B

B∑
b=1

H(pb, qb) (21)

For notational simplicity we sometimes omit function parameters: The cross-
entropy H and accordingly the loss function ldiffcnn depend on V , the set of
all variables in the network, fnn that is defined by the network graph G, and D, a
batch of size B of training data.

4.4 Training stop criteria

It was shown in [6] that the fully convolutional architecture with the global average
pooling layer has little tendency to overfit, even on small datasets. Many very
small datasets are also not big enough for a validation set. This also applies to
the architectures generated and datasets used in this thesis. Therefore, we run
gradient descent for a fixed number of epochs nepochs, generating a new model

14



4.5 Mutation phases

0 1 2 3 4 5

|γj|

0.0

0.2

0.4

0.6

0.8

1.0

p
en

al
ty

Figure 6: The Weigend penalty function for a single channel scale γj for κ = 0.25
compared to a linear penalty function

m ∈M after every epoch. We choose the model mbest ∈M with minimum loss on
the training set T

mbest = argmin
m∈M

[
ldiffcnn(m,T )

]
(22)

The model mbest can then be evaluated on the test set. An epoch is defined as one
training pass through the entire training set T . A model is defined by m = (V,G)
where V is the set of all variables, including weights, biases, and scales while G is
the graph that defines the network’s architecture and can also be expressed as the
composite function fnn. Additionally, in order to save computational resources,
we can stop the training procedure if the minimum loss obtained until the current
step does not improve for nstagnant steps.

Having defined the stopping criteria, we can now outline the entire algorithm
for the DiffCNN in algorithm 1. The mutation procedure will be defined in the
following subsection and for simplicity, we use stochastic gradient descent (SGD)
with mini batches in the algorithm description. In practice, we employ Adam [29]
as later described in section 5. Nevertheless, any other optimizer can be used in
this context as well.

4.5 Mutation phases

Gradient descent can control γj to activate or deactivate existing channels in any
layer. In order to unlimitedly grow or prune channels and change the depth of the
network we run mutations on the neural network, directed by gradient descent.
Instead of growing or pruning the current architecture after every gradient descent
step, we train the weights using our regularized loss function from Equation 21

15



4 Differentiable CNN architectures

Algorithm 1: The complete algorithm for mutating architectures
Data: nepochs the number of epochs to train for

nbatch the size of the batches
straining the number of training steps between mutations
ldiffcnn The loss function as defined in Equation 21
T the training set

Result: A CNN defined by the set of variables V and the architecture graph G
1 V, G ← initial architecture;
2 L ← empty list ; // List that holds history of generated architectures
3 step counter ← 0;
4 foreach e ∈ [ 1 .. nepochs ] do
5 T ← shuffle(T );
6 loss← 0;
7 Tbatched ← batches of size nbatch of T ;
8 foreach D ∈ Tbatched do
9 loss← loss+

ldiffcnn(V,G,D)
|Tbatched| ;

// Gradient descent
10 V ← sgd(V );

// Mutate every straining steps
11 if step counter mod straining = 0 then
12 V,G← mutate(V,G);
13 end
14 step counter ← step counter+ 1;
15 end
16 L← L ∪ {(loss, V,G)};
17 end
18 return argminl∈L lloss;

Procedure sgd(V)
Input : variables V
Output: updated variables V ′

1 V ′ ← {};
2 foreach v ∈ V do
3 g ← ∂

∂v ldiffcnn(V,G,D);
4 v′ ← v + λg ; // Or a more sophisticated optimizer than SGD
5 V ′ ← V ′ ∪ {v′};
6 return V ′;

for a fixed count of steps straining. This method has several advantages compared
to mutating every step. Firstly, γj for each output channel j can arrive at an
equilibrium of usefulness vs penalty contribution after straining steps have passed.

16



4.5 Mutation phases

Secondly, it allows us to initialize the scales γj to a common default of γj = 1
instead of having to initialize them at the deletion threshold tdel. This enables
much better training as later discussed in subsection 4.7. Thirdly, common deep
learning frameworks such as TensorFlow [30] need to define a fixed computational
graph in advance. Rebuilding the graph for mutating the CNN is time expensive
and should not be done every step.

For growing or pruning the number of channels in a convolutional layer i we test
whether |γj | < tdel for all channels j. Let ninactive be the number of channels that
satisfy this condition. Also, as previously introduced, a threshold tinactive = 1
is defined. If ninactive > tinactive we prune ninactive − tinactive of those channels.
Likewise, if ninactive < tinactive we add new channels to the layer. While adding
a single channel may be sufficient, we add Oadd >> 1 for two reasons. Firstly,
because mutations are not performed every step, adding only a single channel
would lengthen training considerably. Secondly, every time we mutate, another
layer can also be created. If the number of channels does not grow quickly enough,
more layers are favored over shallower networks that are easier to train.

So far we described only how to modify the number of output channels in a con-
volutional layer. We now extend the concept to expanding and reducing depth. In
subsection 4.1 Figure 4 we defined the initial architecture. Whenever we add a new
layer we need to achieve three things: Firstly, the new layer should enable to learn
more complex patterns, therefore learning a representation based on a previous
representation. Secondly, the existing learned weights should be reused instead of
undoing the learning progress. Thirdly, the new layer should only be used if it
reduces the cross entropy enough to make up for the gain in penalty. Thus, the
optimization objective for gradient descent must allow to choose between keeping
the old architecture or using the newly created layer. We satisfy these requirements
by introducing a new skip connection every time we add a new layer, as seen in
Figure 7. A skip connection feeds the outputs of a convolutional layer directly to
the global pooling layer. In effect, before global pooling, we concatenate the output
channels of all convolutions to a matrixM ∈ RB×L×Ô where Ô is the number of to-
tal output channels in the network. After global pooling, we yieldMpooled ∈ RB×Ô
which can be fed to the softmax layer. In consequence, the softmax layer can
linearly combine all mean reduced channels from all convolutions.

Having defined the structure the architecture can take the form of, we need to
define the rules that govern when to add and delete a layer. In order to yield a
framework that has a consistent methodology we aim to define those rules similar
to adding or removing channels. Deleting a layer is simple to derive. If all channels
in a layer are inactive, it means that the layer does not serve any purpose in the
network and can, therefore, be deleted. Because all the following convolutional
layers depend on the deleted layer’s outputs, we can delete those as well. For

17



4 Differentiable CNN architectures

Softmax layer

Convolution

batch normalization

ReLU

Input

Global pooling

Convolution

batch normalization

ReLU

… 

skip connections

Figure 7: How the architecture can grow and shrink in depth using skip connections

instance, if we have n convolutional layers in the network and in layer n − 1
all output channels are below the deletion threshold, then we can delete both
layer n − 1 and layer n. A new layer is added whenever the current top-most
convolutional layer d−1 has only active output channels, along with the previously
defined extension of output channels. Those rules are built under the assumption
that adding a single new channel or layer is sufficient to achieve any gain in cross
entropy if adding an arbitrary count of new channels and layers can achieve a gain.
While this may not be strictly true for all problems, we show experimentally that
this is a reasonable assumption.

It is left to discuss the changes to network variables that are required whenever a
new channel or layer is removed or added. A convolutional layer with batch nor-
malization has three variables: The kernel w, scales γ and the bias β. Additionally,
we keep track of the running averages of the mean µEMA and variance σEMA per
channel for evaluation with batch normalization. Whenever we add Cadded output
channels to layer i we expand the output channel axis of w by Cadded and randomly
initialize the new values with the weight initializer that was also used for the ini-
tial architecture. Furthermore, the vectors γ and β need to be expanded by Cadded
dimensions as well, with γ being initialized to one and β being initialized to zero.
The running averages µEMA and σEMA are enlarged by Cadded and initialized to
zero. As the number of output channels of layer i now has changed we need to
change the input channels of all dependent operations. In the case of our archi-
tecture that is the convolutional layer i + 1, if it exists, and the softmax layer d
that linearly combines all channels. For that, the weights of the softmax layer are
expanded in its first axis (number of input neurons) by Cadded and randomly ini-
tialized. The input axis possibly has to be expanded at a specific position instead
of the end, depending on the concatenation of the output channels that make up
the operation’s input. The weights w(i+1)

convolution are expanded in its input channel

18



4.5 Mutation phases

axis and randomly initialized. Likewise, whenever output channels are removed
the variables need to be reduced in size using a mask accordingly. New layers and
removed layers affect the channel input axis, channel output axis and the softmax
weights in a similar manner.

Procedure mutate(V, G)
Input : variables V and network graph G
Output: updated variables V and network graph G
// Mutate for every layer i in the network of depth d (excluding

input and softmax layer)
1 foreach i ∈ [ 2 .. (d− 1) ] do

// Obtain all channels that are below the deletion threshold
2 inactive(i) ← channels(layeri) where |γ(i)| < tdel;

// Prune or grow a channel
3 if |inactive(i)| > tinactive then
4 prune |inactive(i)| − tinactive channels from layer i;
5 update weights, biases, and scales of this layer i and weights of all

consuming layers ; // consuming layers are the softmax layer and
layer i+ 1 if it exists

6 if |inactive(i)| < tinactive then
7 add Oadd channels to layer i;
8 update weights, biases, and scales of this layer i and weights of all

consuming layers ; // consuming layers are the softmax layer and
layer i+ 1 if it exists

// Delete layer if no channels left
9 if |channels(layeri)| = tinactive then

10 delete this layer i and all following layers [ i+ 1 .. d− 1 ] except the
softmax layer;

11 update weights of softmax layer;

// Add a new layer if all channels in last convolutional layer are
used

12 if |inactive(d−1)| = 0 then
13 add new layer after layer d− 1;
14 add skip-connection from layer d− 1 to softmax layer d;
15 update weights of softmax layer;

16 return updated V and G

19



4 Differentiable CNN architectures

4.6 Illustration of the DiffCNN

The entire process is visualized in Figure 8. The CNN is rendered in a simpli-
fied version presented as a graph. We omit the batch normalization, activation
functions, concatenation operations and global average pooling. The previously
printed Figure 7 shows where those concepts are used. Every convolutional layer
has a rectangular rendering with vertical bars attached. Those bars visualize the
penalty induced by every output channel from left to right as defined in Equa-
tion 18. A black vertical bar represents a fully switched off channel, while gray to
white bars describe channels that are in use. Figure 8a shows the initial architec-
ture after very few gradient descent iterations. Therefore, the scales γ are still very
close to their initialization of one. After straining gradient descent steps in Fig-
ure 8b, before mutating the architecture, all of the channels are clearly in use, some
having bigger scales than others. In Figure 8c we mutated the architecture. The
first convolution used all its channels, thus we raised the number of channels by
Cadd and added a new convolutional layer that used the first convolutional layer’s
output as input. Additionally, a skip connection was added to continue training
smoothly. At some point, as shown in Figure 8d, the last convolution’s channels
are not further minimizing the cross-entropy, therefore some of them become de-
activated and are visualized in black. During the next mutation in Figure 8e those
channels are pruned and no additional layer is added.

4.7 Switched-on initialization

Initializing the scales to the deletion threshold tdel as originally done with the L1-
norm of outgoing weights in [9] leads to a bad initial configuration for gradient
descent. The small scales impede the optimization objective so that output chan-
nels tend to get deactivated or the magnitudes of γj are generally very small. This
phenomenon will be closer inspected in section 5. Furthermore, a lot of research
has been put in good weight initialization, with respect to probability distribu-
tion, magnitude, and variance. One, as of to date commonly used initialization,
is the Xavier initialization [31]. It adapts its distribution based on the number of
incoming connections and outgoing connections. We employ the Xavier uniform
initialization.

In order to take advantage of that research it is favorable to initialize the scales to
one instead of tdel, as usually done with batch normalization. As a result, we run
several gradient descent steps straining before pruning and growing, as previously
described in subsection 4.5. During those steps, the scales can adapt to a stable
configuration.

20



4.8 Two-phased learning

(a) The intitial architecture after only a few
gradient descent iterations

(b) All of the channels are in use, no muta-
tion has been performed yet

(c) The mutation added new channels to the first convolution, added a new layer and a
new skip connection

(d) Most of the channels in the last convolution are deactivated

(e) The next mutation pruned the deactivated channels in the last convolution and did
not add a new layer

Figure 8: A visualization of the changing architecture

4.8 Two-phased learning

Experimental evaluation showed that it takes many gradient descent iterations to
update the scales γ to a stable configuration. This process takes much longer

21



4 Differentiable CNN architectures

compared to updating the weights w according to the optimization objective. One
solution to this problem is to raise the learning rate. While this updates the
scales quickly, it impedes proper updates of w leading to a non-converging cross
entropy. Another option is to raise the penalty factor α, therefore weighing the
penalty stronger and increasing the gradient of the scales γ. But this imbalances
the relative importance of cross entropy and reduction of complexity through the
penalty.

We introduce a new concept to solve this issue. If we update the scales γ in-
dependently from the weights w with different learning rates we achieve both a
convergence in γ and a convergence in w. Separating the updates of both variable
sets would lengthen training time as progress is repeatedly undone. Instead, the
first phases trains γ and w jointly, while the second phase only updates γ. Now
the question arises when each phase needs to be run. Updating γ requires that w
is in effective ranges already, thus we can not run the second phase right after a
mutation. Running the second phase before the next mutation and after the first
phase has completed may not arrive at a local minimum of the loss function due to
inaccessible weights w. Therefore we employ the following strategy: First gradient
descent updates γ and w jointly, then only γ, and finally another phase of jointly
training.

The entire cycle is shown in Figure 9. We specify the length of the γ updating phase
as a fraction rscales of the total training steps straining up until the next mutation.
Additionally, the learning rate for the γ phase is given by λscales. In procedure sgd-
with-training-phases we highlight how the training algorithm needs to be adapted.
In section 5 we evaluate how the two-phased learning improves training.

Updating scalesUpdating scales and 
weights MutatingUpdating scales and 

weights

Figure 9: The several different phases in training

4.9 Implementation

Commonly deep learning frameworks such as TensorFlow [30] are not designed to
change their graph structure between training steps. Therefore, the computational
graph is rebuilt after each mutation from an architecture specification that is held
separately. Figure 10 shows how this specification is modeled as a directed acyclic
graph. Every Node produces an output tensor that can then be consumed by
all children. VariableNodes represent convolutional or fully connected layers and
can specify an additional penalty that is imposed due to their scales γ. The sub

22



4.9 Implementation

Procedure sgd-with-training-phases(V, step counter)
Input : variables V , step counter
Output: updated variables V ′

1 V ′ ← {};
// Select a subset of variables and learning rate depending on the

current training phase
2 if is-joint-training-phase (step counter) then
3 S ← V ;
4 λ′ ← λ;
5 else
6 S ← Vγ where Vγ ⊂ V ; // only use scales γ of all variables
7 λ′ ← λscales;

8 foreach v ∈ S do
9 g ← ∂

∂v ldiffcnn(V,G,D);
10 v′ ← v + λ′g ; // Or a more sophisticated optimizer than SGD
11 V ′ ← V ′ ∪ {v′};
12 return V ′ ∪ (V − S);

classes ConvolutionalNode and FullyConnectedNode have attributes like kernel size
and the current number of channels or neurons. Each node type is responsible for
generating its respective part of the computational graph and maintaining integrity
after network mutation. This includes adding concatenation operations to merge
inputs or adapting variables to deal with a changed size of inputs or outputs. The
entire structure integrates with the TensorFlow variable saving system to restore
from disk if training needs to be continued or evaluation is invoked. Additionally,
visualizations of the architecture such as in Figure 8 can be generated at any point
in time and inspected in TensorBoard with many other statistics in real-time. A
command line interface with a wide range of parameters enables exploration of
many different ideas that can be used to govern the DiffCNN. The application has
the capability to run the entire training and evaluation on the GPU. Along the
DiffCNN, it provides a reimplementation of [6] using the directed acyclic graph
as a specification that can not be mutated. To enable reproducibility the entire
source code is available at https://github.com/timediv/diffcnn.

23

https://github.com/timediv/diffcnn


4 Differentiable CNN architectures

ConvolutionalNode FullyConnectedNode

InputNodeVariableNode

Node

has ?

children

1

0..*

Figure 10: The neural network architecture is specified by a simple directed acyclic
graph modeled as above

24



5 Experiments on UCR datasets & Discussion

In this section, we will evaluate the DiffCNN on the UCR datasets [10] and analyze
the advantages and limitations of the approach. The UCR archive is one of the
most prevalent repositories for TSC featuring 85 univariate time series datasets.
It allows a detailed comparison to existing deep learning, feature extraction, dis-
tance based and ensemble based approaches. In the following, we begin with
defining the experiment settings, including training, all hyperparameters and pre-
processing. Then, we present and discuss the results on the UCR datasets. We
proceed with analyzing how the network complexity is controlled by gradient de-
scent and whether the optimal architecture has been chosen. We show that both
the switched-on initialization and the two phased learning are necessary to achieve
good convergence and suitable architectures. We investigate good choices of the
penalty factor α and how training with mutations generally behaves, particularly
in contrast to the FCN’s training. Finally, complexity and scalability of CNNs and
the DiffCNN are mentioned and the limitations of the approach are determined.

5.1 Experiment settings

For the joint training phase as described in subsection 4.8, we employ the Adam
optimizer with its default values from [29]. Weights are initialized Xavier uniformly
as introduced by [31]. An overview over all required hyperparameters for the
DiffCNN is given in the Appendix A in Table 2, including a description, their
default values and how to set them if dataset dependent treatment is required.
On the wide range of UCR datasets, no special parameter tuning is necessary and
therefore all datasets are used with the same values. Conclusively, the default
parameters are sufficient to handle a wide variety of datasets.

The UCR datasets are already split into training and test sets and, therefore,
the results can easily be compared to other algorithms. A minimal amount of
preprocessing is required to apply the DiffCNN to all 85 datasets. We only z-
normalize the input using the training set mean and variance prior to feeding it to
the CNN.

5.2 Performance evaluation

We report the results on all 85 UCR datasets. Compliant with the competitors we
adopt the testing error e, given by

e = 1− paccuracy (23)

25



5 Experiments on UCR datasets & Discussion

0 10 20 30 40 50

Number of wins

DiffCNN

Reproduced FCN

(a) Reproduced FCN vs DiffCNN

0 5 10 15 20 25 30 35 40 45

Number of wins

Retrained DiffCNN

Reproduced FCN

(b) Reproduced FCN vs Retrained Dif-
fCNN

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Mean-Per-Class-Error (MPCE)

Reproduced FCN

DiffCNN

Retrained DiffCNN

(c) MPCE on the DiffCNN, the retrained variant and the re-
produced FCN

Figure 11: Comparison with the reproduced FCN on all 85 UCR datasets

The accuracy is calculated on the entire test set for the architecture and weights
with minimal training loss as described in subsection 4.4.

Figure 11 compares the DiffCNN with a reproduced version of the FCN. Both the
source code provided2 by the FCN’s authors [6], as well as our own implementation,
yields slightly worse results than reported in their publication. Due to the focus on
mutating architectures by differentiation, we will compare the fixed architecture
of the reproduced FCN with the dynamic architecture of the DiffCNN. Later, we
add a comparison with the published results of the FCN and other related TSC
algorithms. We will use our own implementation of the FCN for a fair comparison
with the DiffCNN.

We present two types of measures in Figure 11. The first measure is the mean
per class error (MPCE). It was originally defined [6] for a better comparison of
competitors on the UCR archive. It is given by

PCEk =
ek
ck

MPCE =
1

K

∑
k

PCEk (24)

where k refers to each dataset and K is the number of all datasets. The error on
the dataset k is denoted as ek with ck being the number of classes in that particular
dataset. The MPCE is evaluated for each classifier over all datasets. The second
measure is the number of wins, the number of times a classifier outperforms all

2https://github.com/cauchyturing/UCR_Time_Series_Classification_Deep_Learning_
Baseline

26

https://github.com/cauchyturing/UCR_Time_Series_Classification_Deep_Learning_Baseline
https://github.com/cauchyturing/UCR_Time_Series_Classification_Deep_Learning_Baseline


5.2 Performance evaluation

0.0 0.2 0.4 0.6 0.8 1.0
Testing error

50words
Adiac

ArrowHead
Beef

BeetleFly
BirdChicken

Car
CBF

ChlorineCon
CinCECGTorso

Coffee
Computers

CricketX
CricketY
CricketZ

DiatomSizeR
DistalPhalanxOutlineAgeGroup

DistalPhalanxOutlineCorrect
DistalPhalanxTW

Earthquakes
ECG200

ECG5000
ECGFiveDays

ElectricDevices
FaceAll

FaceFour
FacesUCR

fish
FordA
FordB

GunPoint
Ham

HandOutlines
Haptics
Herring

InlineSkate
InsectWingbeatSound

ItalyPower
LargeKitchenAppliances

Lightning2
Lightning7

MALLAT

D
a
ta

se
t

Reproduced FCN

DiffCNN

Retrained DiffCNN

0.0 0.2 0.4 0.6 0.8 1.0
Testing error

Meat
MedicalImages

MiddlePhalanxOutlineAgeGroup
MiddlePhalanxOutlineCorrect

MiddlePhalanxTW
MoteStrain

NonInvThorax1
NonInvThorax2

OliveOil
OSULeaf

PhalangesOutlinesCorrect
Phoneme

Plane
ProximalPhalanxOutlineAgeGroup

ProximalPhalanxOutlineCorrect
ProximalPhalanxTW

RefrigerationDevices
ScreenType

ShapeletSim
ShapesAll

SmallKitchenAppliances
SonyAIBORobot

SonyAIBORobotII
StarLightCurves

Strawberry
SwedishLeaf

Symbols
SyntheticControl

ToeSegmentation1
ToeSegmentation2

Trace
TwoLeadECG
TwoPatterns

UWaveGestureLibraryAll
UWaveX
UWaveY
UWaveZ

wafer
Wine

WordSynonyms
Worms

WormsTwoClass
yoga

D
a
ta

se
t

Reproduced FCN

DiffCNN

Retrained DiffCNN

Figure 12: Testing error of the DiffCNN, compared to the FCN, the state of the
art in TSC, while employing a fixed CNN architecture

other classifiers in the comparison. The figures 11a and 11c show that even though
the DiffCNN automatically learns its architecture it performs only about 1% worse
in the MPCE measure while having slightly fewer wins over all datasets. When
retraining the DiffCNN using its final architecture by reinitialization with random
weights, biases, and scales we outperform the FCN in the number of wins. Figure 12
shows the testing error on all 85 datasets for the DiffCNN, the retrained version
and the reproduced FCN. The exact values can be found in the Appendix A in
Table 3.

Finally, we compare competitors from section 2 with the retrained DiffCNN. We
use a selection of 44 UCR datasets that was originally used in other publications
in order to achieve comparability. We did not reproduce their approaches but use
the publication values from [6]. Figure 13a shows the MPCE for all classifiers. The
DiffCNN is competitive both in terms of its MPCE as well as its mean ranking
over all datasets in Figure 13b. The Appendix A contains the testing errors of all
44 datasets in Table 4.

27



5 Experiments on UCR datasets & Discussion

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045

Mean-Per-Class-Error (MPCE)

DTW

COTE

MCNN

BOSSVS

PROP

BOSS

SE1

TSBF

MLP

FCN

ResNet

DiffCNN Retrained

(a) MPCE for each classifier on all 44
datasets

0 2 4 6 8 10

Average arithmetic ranking

DTW

COTE

MCNN

BOSSVS

PROP

BOSS

SE1

TSBF

MLP

FCN

ResNet

DiffCNN Retrained

(b) Mean ranking on all 44 datasets

Figure 13: Comparison on 44 UCR datasets with published results from related
work

5.3 Adapting network complexity

The DiffCNN is designed to change the network complexity in terms of network
depth and the number of channels per convolutional layer automatically. Natu-
rally, different datasets vary in their inherent complexity. Some datasets are easily
classified because of simple separability of classes. Others contain complex pat-
terns that require the network to have several intermediate representations and
therefore a deeper architecture.

We investigate whether the introduced algorithm does adapt to the complexity of
the respective dataset. If so, the final architecture with the lowest training loss
would have different depths and number of total output channels. We recorded the
total number of channels and the depth for all UCR datasets when the training loss
was the lowest. Figure 14 shows that both depth and the total number of channels
vary considerably over the datasets. Very simple datasets like the WormsTwoClass
dataset only required a depth of 3 to achieve a 9.4% better accuracy than the deeper
handcrafted FCN architecture with depth 5. A depth of 3 embodies an input layer,
a single convolution, and the softmax layer. The final architecture for this dataset
can be seen in Figure 15. In contrast to that, the 50words dataset profits from a
much deeper architecture of depth 9, also yielding a better accuracy compared to
the FCN baseline. Figure 16 shows this rather big architecture.

When comparing the complexity of the DiffCNN architectures and the handcrafted
FCN architecture, it is interesting to observe in Figure 14b that the median number
of channels of the generated architectures is quite similar to the fixed number of
512 channels in the case of the FCN. This indicates that the handcrafted number
of channels is a good compromise for the UCR datasets. On the other hand, as
seen in Figure 14a, the DiffCNN has the tendency to produce deeper architectures

28



5.3 Adapting network complexity

3 4 5 6 7 8 9 10 11 15 17

Network depth

0

2

4

6

8

10

12

14

16

Fr
e
q
u
e
n
cy

(a) Histogram of depth over all UCR
datasets

0 500 1000 1500 2000 2500 3000 3500 4000

Total number of channels in the network

0

5

10

15

20

Fr
e
q
u
e
n
cy

(b) Histogram of total number of chan-
nels over all UCR datasets

Figure 14: Final architectures with lowest training loss have different complexities
depending on the dataset — FCN handcrafted architecture highlighted
in orange, blue dashed line visualizes the DiffCNN’s median

than the FCN’s depth of 5. A possible explanation for this observation is that
layers are added iteratively and therefore can not be optimized jointly right from
the beginning of training. This may lead to non-optimal convolution kernels that
could, in theory, be condensed to fewer layers.

Figure 15: A very simple architecture for the WormsTwoClass dataset is sufficient
to outperform the FCN baseline

Figure 16: The 50words dataset profits from a much deeper architecture in order
to classify the 50 target classes with high accuracy

While we already showed that the depth and number of channels vary between
datasets and can lead to better accuracies compared to a fixed architecture, we
need to investigate whether the final architecture is the optimal choice. For that, we
train several different architectures from scratch with varying depths and compare

29



5 Experiments on UCR datasets & Discussion

it with the DiffCNNs final architecture. For this experiment, we use the Car
dataset because it produces a medium network depth compared to other datasets.
We can thus analyze how shallower and deeper variants perform. When running
the DiffCNN the final architecture has a depth of 7 and the mean of the number of
channels is 150. Therefore, we ran several CNNs (DiffCNN without mutation) on
the Car dataset with a fixed number of 150 channels per layer and a depth varying
from 3 to 9. Figure 17 shows that a depth of 6 or 7 yields the best possible test
accuracy on the dataset. The automatically picked depth of 7 by the DiffCNN,
therefore, is a good choice for the dataset. This shows that the mutation phases
produce networks with reasonable complexity.

2 3 4 5 6 7 8 9 10

Network depth

0.0

0.2

0.4

0.6

0.8

1.0

T
e
st

 a
cc

u
ra

cy

Figure 17: We varied the number of layers with a fixed channel count of 150, the
DiffCNN’s depth is highlighted in orange

5.4 Necessity of switched-on initialization

In subsection 4.7 we claimed that optimization is impeded when the scales γ are
initialized to the deletion threshold tdel, as originally done with the weights in [9].
In this section, we experimentally show that this is the case. We trained two
variants on the Car dataset, one with γ initialized to γinit = 1, the other initialized
to γinit = tdel = 0.05. In Figure 18 we observe that an initialization at the deletion
threshold leads to a long period of being stuck in a local minimum. Only after
15, 000 steps of training, this minimum is left behind and the loss function is
properly optimized. The training that has been initialized with γinit = 1 has
already converged at that point and training has terminated.

The same problem applies to the optimization of the architecture. In Figure 19
we can observe that the architecture has a too low complexity for long periods of

30



5.5 Necessity of two-phased learning

0 5000 10000 15000 20000

Step

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
ra

in
in

g
 b

a
tc

h
 c

ro
ss

 e
n
tr

o
p
y

initial scales = 1.0

initial scales = 0.05

(a) Optimization of the cross entropy

0 5000 10000 15000 20000

Step

0.0

0.2

0.4

0.6

0.8

1.0

T
e
st

 a
cc

u
ra

cy
 a

t 
m

in
im

u
m

 t
ra

in
in

g
 l
o
ss

initial scales = 1.0

initial scales = 0.05

(b) Test accuracy at minimum training
loss up until current step

Figure 18: Setting the initial scales to the deletion threshold tdel leads to a long
period of being stuck in a local minimum

0 5000 10000 15000 20000

Step

0

100

200

300

400

500

600

700

800

900

T
o
ta

l 
n
u
m

b
e
r 

o
f 

ch
a
n
n
e
ls

initial scales = 1.0

initial scales = 0.05

(a) The total number of channels and
neurons in the network

0 5000 10000 15000 20000

Step

0

1

2

3

4

5

6

7

8

D
e
p
th

 o
f 

th
e
 a

rc
h
it

e
ct

u
re

initial scales = 1.0

initial scales = 0.05

(b) The depth of the network

Figure 19: Setting the initial scales to the deletion threshold tdel is reflected in an
architecture that is too simple for a long period of time

time. Right in the beginning the first mutations reduce the channels to a very
small number before the network recovers and starts adding channels and layers
again.

5.5 Necessity of two-phased learning

In subsection 4.8 we proposed to use two kinds of learning phases. The first phase
trains weights, biases, and scales jointly, while the second phase only changes the
scales. The second phase is embedded within the first phase with a ratio rscales of
all training steps straining. We reasoned that we require this separation in order
for the switches to converge fast enough. In this section, we will experimentally
show the necessity of this approach.

31



5 Experiments on UCR datasets & Discussion

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Step

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
ra

in
in

g
 b

a
tc

h
 c

ro
ss

 e
n
tr

o
p
y

with two phased learning

without two phased learning

raised learning rate

(a) Cross entropy optimization

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Step

2

4

6

8

10

12

14

16

18

20

D
e
p
th

 o
f 

th
e
 a

rc
h
it

e
ct

u
re

with two phased learning

without two phased learning

raised learning rate

(b) Growth of the network depth

Figure 20: Only the two phased learning can achieve both a good cross entropy
convergence, as well as a stable architecture

We analyze the effects of always optimizing all variables jointly. In Figure 20b we
observe that keeping the same learning rate of λ = 10−3 for the entire training
results in an architecture where the scales never fall below the deletion threshold
and the networks just keeps growing indefinitely. Raising the learning rate to
λ = 0.05 for the entire training inhibits a convergence of the cross entropy and
also keeps the architecture from growing. Figure 20a shows that in the form of an
oscillating cross entropy that is barely reduced over time. With the introduction
of a joint learning phase with a learning rate of λ = 10−3 and a separate scales
learning phase with a learning rate of λscales = 0.05 we achieve both a cross entropy
convergence, as well as a stable architecture.

5.6 Experimental choice of penalty factor

The DiffCNN uses a previously in Equation 21 defined loss function. This function
has a parameter α that weighs the penalty against the cross entropy. Therefore,
the network complexity assumably depends on this penalty factor α. To visualize
the effects, we varied the several orders of magnitudes of penalty factors on the
Car dataset. On all datasets, the cross entropy after 100 iterations is in the order
of 0.1 to 2.0.

Figure 21b shows that indeed the complexity of the final architecture is affected
by this factor. It is now in question whether this complexity has a major impact
on the final test accuracy. From Figure 21a and Figure 21b it is obvious that a
high penalty factor of α = 10−2 impedes both the growth of the architecture, as
well as the final test accuracy at the lowest training loss. Whereas even though
the complexity of the architectures for α ∈ [10−3, 10−5] differ significantly, the
test accuracy barely differs. We can conclude that even with more architecture
complexity there is little tendency of overfitting. By evaluation on all UCR dataset

32



5.7 Training behavior and duration

0 5000 10000 15000 20000

Step

0.0

0.2

0.4

0.6

0.8

1.0

T
e
st

 a
cc

u
ra

cy
 a

t 
m

in
im

u
m

 t
ra

in
in

g
 l
o
ss

with penalty 1e-2

with penalty 1e-3

with penalty 1e-4

with penalty 1e-5

(a) A high penalty factor results in low
test accuracy while smaller values
lead generally to good test perfor-
mance

0 5000 10000 15000 20000

Step

0

500

1000

1500

2000

2500

3000

3500

T
o
ta

l 
n
u
m

b
e
r 

o
f 

ch
a
n
n
e
ls

with penalty 1e-2

with penalty 1e-3

with penalty 1e-4

with penalty 1e-5

(b) The penalty factor considerably af-
fects the total number of channels
over time

Figure 21: Varying the penalty exposes how test performance and network com-
plexity are affected

we settled for a common penalty factor of α = 10−4 that generally works well on
a wide range of datasets.

5.7 Training behavior and duration

In this section, we perform experiments on the Car dataset to expose how training
behaves for the DiffCNN. We analyze distinct features and compare it with the
FCN’s training. Furthermore, we inspect how training differs when the DiffCNN’s
final architecture is taken and variables are reinitialized and retrained.

We logged test accuracy and training batch cross entropy after every step of train-
ing. Moreover, test accuracy at the minimum training loss over all previous steps
was tracked. For better visual presentation a mean filter of filter size 100 is applied
to all data in Figure 22. Figure 22a shows how the test accuracy changes during
training. The mutations that added a new layer to the DiffCNN network every
straining = 1000 steps are marked with a dashed line in the plot. Until the step
s = 1000, we notice that the test accuracy does not improve. Only with the first
mutation, the required new layer is added and the total depth of the network is
raised. Shortly thereafter the test accuracy improves significantly. With every
mutation that adds a new layer, the test error can improve until s = 5000. In the
followed training the test accuracy stagnates and no more layers are added. Sev-
eral distinct features can be observed in the plot. Firstly, after every mutation, we
can observe a general improvement in test accuracy until convergence. Secondly,
after a mutation, the test accuracy often drops shortly before it quickly rises again.
This can be explained by the scales γ that we initialize to one, shortly disrupting

33



5 Experiments on UCR datasets & Discussion

0 1000 2000 3000 4000 5000 6000 7000

Step

0.0

0.2

0.4

0.6

0.8

1.0

T
e
st

 a
cc

u
ra

cy

DiffCNN

DiffCNN retrained

FCN

(a) The test accuracy after every train-
ing step

0 1000 2000 3000 4000 5000 6000 7000

Step

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T
ra

in
in

g
 b

a
tc

h
 c

ro
ss

 e
n
tr

o
p
y

DiffCNN

DiffCNN retrained

FCN

(b) The cross entropy on the current
training batch

Figure 22: The training behavior of the DiffCNN, retrained version and the FCN
on the Car dataset

the network’s predictions on the test set. In Figure 22b it can be observed how
the cross entropy behaves for each training batch. In this plot, after a mutation,
no sudden rises of the cross entropy can be observed. We can conclude that while
the general test performance is inhibited by the mutation, the network can quickly
re-optimize the current training batch. Additionally, from Figure 22b it is obvious
that new layers are added up until the cross entropy is very close to zero.

In Figure 22 we also included the FCN’s training and DiffCNN’s retraining behavior
in all plots. When retraining the DiffCNN with its final depth of 7 we no longer
need to mutate the architecture. Therefore, the test accuracy quickly rises in just
the first s = 1000 steps. Nevertheless, it takes several thousand steps more to
converge in terms of test accuracy. The same behavior can be observed in terms of
change in cross entropy. In contrast to that, the FCN architecture with its smaller
depth of 5 takes longer to reach a low cross entropy and high test accuracy. In
Figure 22b it can be observed that it actually takes about just as many steps for
the FCN to converge compared to the DiffCNN that learns its architecture during
the process. If we decide to additionally retrain the DiffCNN’s final architecture
we end up with about 1.5 times more steps required. Apart from this, there is
additional time lost by rebuilding the graph during mutation and the generally
deeper architectures that are produced. We measured3 the training time of both
the DiffCNN and the FCN to determine how much more time is needed for each
step. In the mean, each step of the DiffCNN takes 3.3 times longer while the
median is at 3.0.

Figure 23 shows the test accuracy at minimum training loss for all aforementioned
three training runs. The general trend is similar to the current test loss from
Figure 22a. The same applies to the final test accuracy at the end of training.

3on a GeForce GTX Titan X graphics card

34



5.8 Complexity and scalability

0 1000 2000 3000 4000 5000 6000 7000

Step

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
e
st

 a
cc

u
ra

cy
 a

t 
m

in
im

u
m

 t
ra

in
in

g
 l
o
ss

DiffCNN

DiffCNN retrained

FCN

Figure 23: The test accuracy at the minimum training loss after every step for the
DiffCNN, retrained version and the FCN

5.8 Complexity and scalability

Generally, the same complexity and scalability apply to the DiffCNN as for any
other CNN. A complexity analysis is performed in [32]. We now shortly inspect
how the number of samples, classes, and length of the time series impacts training.
The training time until loss convergence does not depend on the number of samples.
Adding more samples would not slow down training but improve generalization
performance [33]. Furthermore, the UCR archive includes datasets containing two
to 60 different classes. Neither the lower nor the upper end poses a challenge to
CNNs or the DiffCNN, making the approach fairly scalable in terms of the number
of classes. The time series length was limited to 2709 in the case of the UCR
archive. The length of the time series affects runtime quadratically [32] but does
not harm the DiffCNN’s classification performance as long as the kernel size is
adapted properly to the size of patterns in the series.

5.9 Limitations of the DiffCNN

While the DiffCNN has competitive test set performance it also fails on some
datasets. In this section, we investigate general limitations and specific failure
cases of the approach. One major problem that has not been addressed with the
DiffCNN approach is the choice of the kernel. While this parameter is much easier
to set than the network depth or number of channels, it still needs to be picked
manually according to the user’s domain knowledge. Furthermore, the penalty
factor α is not strongly dataset dependent but care must be taken to not choose

35



5 Experiments on UCR datasets & Discussion

too big values that restrict architecture growth. The overall depth of the average
network was shown to be slightly raised compared to the well performing fixed
architecture of the FCN due to incremental architecture expansion. While the
increased depth does not harm final test accuracy it does slightly raise hardware
requirements during training and testing. Additionally, no striding was used in the
DiffCNN architectures. Striding may reduce hardware requirements by shrinking
the spatial extent of the feature maps and raising the receptive field of the following
neurons without growing the kernel size [24].

(a) Not all channels are used and the depth will therefore not be increased during the
next mutation even though additional depth may be beneficial.

(b) This architecture started with fewer initial channels and therefore properly increases
depth. This method generally generates deeper architectures.

Figure 24: Visualization of failure ‘depth vs channels’

The first failure case we investigate is the ‘depth vs channels’ issue. It affects,
possibly among others, the datasets Yoga, Wine, HandOutlines, and Computers.
This problem occurs whenever the loss is not reduced by using all channels in the
current layer while adding a new channel would be of value. We discuss this phe-
nomenon for the dataset Yoga. In Figure 24a the channels in the first convolution
are not all of use, therefore gradient descent pushes the scales of a neuron below
the deletion threshold. As a result, no additional layer is added and the network
keeps optimizing with a single convolutional layer, restraining the possible func-
tions fnn that can be learned. This directly affects the resulting cross entropy
and test accuracy, keeping them far from optimal. On the other hand Figure 24b
has fewer initial channels in the first convolution, leading to subsequent expansion
of the network and much better accuracies. The solution of lowering the initial
number of channels may lead to deeper networks in general and is therefore far
from optimal. This problem applies to only a few of the 85 datasets in the UCR
archive.

36



5.9 Limitations of the DiffCNN

A second failure case is a short period of very low training loss that overfits perfectly
to the current batch but fails to generalize. This period usually occurs right after
a mutation or a scales training phase and quickly vanishes afterwards. This short
loss of generalization has already been observed in subsection 5.7. If the training
loss has been particularly low and fails to get even lower over all following steps,
it is kept until training stops and harms the final testing accuracy as seen in
Figure 25a. From Figure 25b it is obvious that the testing error is generally much
better and this failure indeed only affects a short period of time. Figure 25c shows
that the scales training right before the new minimal training loss had a short
negative effect on the cross entropy. If enough training data is available a simple
solution to this problem is the introduction of a validation set that can be used
to determine the final model and when to stop training instead of the training
loss. As an alternative solution, one could ensure that the lowest training loss is
only updated whenever the training loss is low for several training steps. This
problem affects, possibly among others, the datasets Symbols, ItalyPowerDemand,
ArrowHead, and FacesUCR.

0 2000 4000 6000 8000 10000 12000

Step

0.0

0.2

0.4

0.6

0.8

1.0

T
e
st

 a
cc

u
ra

cy
 a

t 
m

in
im

u
m

 t
ra

in
in

g
 l
o
ss

Symbols

(a) From step 6, 600 on the lowest training
loss that overfit previously is kept

0 2000 4000 6000 8000 10000 12000

Step

0.0

0.2

0.4

0.6

0.8

1.0

T
e
st

 a
cc

u
ra

cy

Symbols

(b) The test accuracy is generally high

0 2000 4000 6000 8000 10000 12000

Step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
ra

in
in

g
 b

a
tc

h
 c

ro
ss

 e
n
tr

o
p
y

Symbols

(c) The short period of overfitting occurred right after a scales training phase

Figure 25: Failure case: Short period of overfitting

37



6 Conclusion & Future work

6 Conclusion & Future work

In this thesis, we proposed DiffCNN — a CNN that not only adapts it weights
using gradient descent but also its architecture. We introduced a novel regular-
ization technique that enables the modification of the number of output channels
and depth of the network by differentiation. Skip connections are inserted to
maintain stable optimization. As a result, the complexity of the network can be
automatically adapted and architectures need no longer be handcrafted. The re-
maining hyperparameters are easier to specify and have clear instructions while
their default values work on a wide range of datasets. During training, we employ
two different training phases that enable this joint optimization of architecture
and weights. An evaluation on 85 datasets of the UCR archive showed that com-
petitive accuracy can be achieved with this method while only requiring about
three times more training time than handcrafted architectures. Additionally, by
automatically adapting the network’s complexity to the dataset, we outperformed
existing approaches on several datasets.

The approach was only evaluated on univariate time series but could easily be
expanded to multivariate time series by modeling the different series as channels
of the input layer. Furthermore, in future work, the size of the convolution kernel
could be learned in a similar principle by penalizing bigger kernels and pushing de-
activated parts to zero. Instead of specifying the number of training steps straining
between mutations manually, we could determine when the loss reduce has stag-
nated. The inserted skip connections may also be penalized to remove no longer
required skip connections later in training. We outlined two shortcomings of the
current approach that could be solved for even better benchmark results: Firstly,
the depth of the architecture may not expand sufficiently if a layer’s number of
channels is not growing. Secondly, short periods after mutations and scale opti-
mization can lead to temporary overfitting that needs to be avoided for the final
solution.

38



A Supplementary material for experiments

Table 2: An overview of all hyperparameters and how to set their values.
Parameters that are dataset sensitive are marked with stars.

Parameter Purpose Instructions

λ Learning rate for the selected op-
timizer.

For the UCR datasets we opti-
mize using Adam with a learn-
ing rate of λ = 10−3. It also
introduces parameters β1 = 0.9,
β2 = 0.999, and ε = 10−8. The
optimizer’s default [29] is usually
a good choice.

nbatch Mini batch gradient descent uses
a batch of samples for every
training step. The number of
samples is specified by nbatch

This value can be raised the more
data and computational power is
available, but has little effect on
final testing accuracy. Common
values are nbatch ∈ {16, 32, 64}.
For the UCR datasets we use
nbatch = 16.

nstagnant This optional parameter only re-
duces training time. The number
of steps that is maximally trained
with no improvement in training
loss.

For the UCR datasets we use
nstagnant = 5000.

F nepochs At some point training needs to
be terminated. This may either
occur through nstagnant or when
nepochs epochs have passed.

For the UCR datasets we use
nepochs = 2000 from [6].

F Ki Kernel size of convolutional layer
i

This parameter can not be ac-
cessed by gradient descent yet.
Set it to a value that is a rea-
sonable size of the patterns to ex-
pect in the input time series. The
same value can be used for all lay-
ers. For the UCR datasets we use
Ki = 16.

DiffCNN
parameter

tdel Below this threshold neurons or
channels may be deleted.

Use default of tdel = 5 · 10−2 as
defined in [9].

39



A Supplementary material for experiments

Table 2: An overview of all hyperparameters and how to set their values.
Parameters that are dataset sensitive are marked with stars.

Parameter Purpose Instructions

tinactive The number of neurons or chan-
nels that should be inactive to
allow gradient descent to reacti-
vate them if more complexity is
needed.

Use default of tinactive = 1 as de-
fined in [9].

Oinitial When a new layer is created, ini-
tialize with Oinitial channels.

Should be set high enough to
be able to reduce the loss at
all, but low enough to prevent
wasting many resources until the
next mutation. In this thesis
Oinitial = 64 is used.

Oadd Whenever less than tinactive out-
put channels in a layer are inac-
tive, add Oadd many new chan-
nels.

Can be any integer Oadd > 0, big-
ger values may lead to faster con-
vergence to the right number of
channels and shallower networks.
In this thesis Oadd = 64 is used.

F α Factor that weights the penalty
in the loss function.

In general, a very small value is
sufficient. Too big values lead to
too much regularization. Should
be about four orders of magni-
tude smaller than the loss at the
beginning of training. In our ex-
periments we use α = 10−4.

F straining The number of training steps be-
fore the next mutation is applied.

Should be set so that the loss
change saturates until the next
mutation. In our experiments we
use straining = 103.

rscales The fraction of steps straining to
only update the scales γ.

For the UCR datasets we use
rscales = 0.1.

λscales Learning rate for only training
the scales γ.

For the UCR datasets we use
λscales = 50 · λ = 5 · 10−2.

40



Table 3: DiffCNN and reproduced FCN testing error on all 85 UCR datasets
Error rate on dataset Reproduced

FCN
DiffCNN Retrained

DiffCNN

50words 0.347 0.301 0.211
Adiac 0.169 0.217 0.192
ArrowHead 0.171 0.606 0.194
Beef 0.367 0.267 0.3
BeetleFly 0.5 0.2 0.150
BirdChicken 0.050 0.2 0.15
Car 0.15 0.1 0.067
CBF 0.007 0.001 0.000
ChlorineCon 0.231 0.372 0.273
CinCECGTorso 0.176 0.161 0.234
Coffee 0.000 0 0
Computers 0.180 0.32 0.332
CricketX 0.197 0.21 0.172
CricketY 0.208 0.197 0.197
CricketZ 0.205 0.2 0.149
DiatomSizeR 0.699 0.699 0.425
DistalPhalanxOutlineAgeGroup 0.190 0.252 0.23
DistalPhalanxOutlineCorrect 0.197 0.198 0.198
DistalPhalanxTW 0.220 0.248 0.245
Earthquakes 0.217 0.233 0.242
ECG200 0.12 0.12 0.110
ECG5000 0.065 0.066 0.065
ECGFiveDays 0.014 0.001 0.001
ElectricDevices 0.288 0.379 0.287
FaceAll 0.076 0.148 0.144
FaceFour 0.057 0.045 0.045
FacesUCR 0.053 0.169 0.035
fish 0.04 0.023 0.017
FordA 0.101 0.078 0.064
FordB 0.12 0.078 0.104
GunPoint 0.000 0.007 0
Ham 0.333 0.286 0.476
HandOutlines 0.210 0.362 0.362
Haptics 0.536 0.519 0.468
Herring 0.328 0.422 0.375
InlineSkate 0.604 0.636 0.607
InsectWingbeatSound 0.606 0.432 0.403
ItalyPower 0.042 0.278 0.037
LargeKitchenAppliances 0.099 0.115 0.104
Lightning2 0.246 0.246 0.197
Lightning7 0.151 0.151 0.164
MALLAT 0.044 0.023 0.021
Meat 0.2 0.017 0.083
MedicalImages 0.246 0.238 0.220

41



A Supplementary material for experiments

Table 3: DiffCNN and reproduced FCN testing error on all 85 UCR datasets
Error rate on dataset Reproduced

FCN
DiffCNN Retrained

DiffCNN

MiddlePhalanxOutlineAgeGroup 0.3 0.280 0.32
MiddlePhalanxOutlineCorrect 0.237 0.243 0.278
MiddlePhalanxTW 0.414 0.416 0.424
MoteStrain 0.063 0.146 0.109
NonInvThorax1 0.103 0.223 0.050
NonInvThorax2 0.047 0.14 0.112
OliveOil 0.3 0.6 0.200
OSULeaf 0.017 0.05 0.054
PhalangesOutlinesCorrect 0.51 0.205 0.193
Phoneme 0.676 0.682 0.669
Plane 0.000 0 0
ProximalPhalanxOutlineAgeGroup 0.176 0.127 0.185
ProximalPhalanxOutlineCorrect 0.103 0.158 0.100
ProximalPhalanxTW 0.197 0.252 0.255
RefrigerationDevices 0.515 0.533 0.440
ScreenType 0.360 0.416 0.448
ShapeletSim 0.35 0.456 0.261
ShapesAll 0.1 0.113 0.080
SmallKitchenAppliances 0.299 0.243 0.240
SonyAIBORobot 0.03 0.023 0.018
SonyAIBORobotII 0.027 0.048 0.034
StarLightCurves 0.042 0.032 0.028
Strawberry 0.091 0.357 0.157
SwedishLeaf 0.035 0.048 0.053
Symbols 0.051 0.419 0.062
SyntheticControl 0.02 0.003 0.003
ToeSegmentation1 0.044 0.048 0.039
ToeSegmentation2 0.077 0.062 0.069
Trace 0.000 0 0
TwoLeadECG 0.001 0.000 0.001
TwoPatterns 0.167 0.000 0
UWaveGestureLibraryAll 0.185 0.154 0.104
UWaveX 0.248 0.238 0.209
UWaveY 0.389 0.333 0.281
UWaveZ 0.275 0.276 0.276
wafer 0.003 0.007 0.002
Wine 0.296 0.5 0.5
WordSynonyms 0.445 0.342 0.315
Worms 0.315 0.387 0.365
WormsTwoClass 0.343 0.249 0.249
yoga 0.191 0.416 0.443

Wins 50 35 —
Wins Retrained 40 — 45
MPCE 0.055 0.063 0.054

42



Table 4: Testing error of the DiffCNN and its competitors as given in [6]
on 44 UCR datasets

Error rate on dataset DTW COTE MCNN BOSSVS PROP BOSS SE1 TSBF MLP FCN ResNet DiffCNN

Adiac 0.396 0.233 0.231 0.302 0.353 0.22 0.373 0.245 0.248 0.143 0.174 0.192
Beef 0.367 0.133 0.367 0.267 0.367 0.2 0.133 0.287 0.167 0.25 0.233 0.3
CBF 0.003 0.001 0.002 0.001 0.002 0.000 0.01 0.009 0.14 0 0.006 0
ChlorineCon 0.352 0.314 0.203 0.345 0.36 0.34 0.312 0.336 0.128 0.157 0.172 0.273
CinCECGTorso 0.349 0.064 0.058 0.13 0.062 0.125 0.021 0.262 0.158 0.187 0.229 0.234
Coffee 0.000 0 0.036 0.036 0 0 0 0.004 0 0 0 0
CricketX 0.246 0.154 0.182 0.346 0.203 0.259 0.297 0.278 0.431 0.185 0.179 0.172
CricketY 0.256 0.167 0.154 0.328 0.156 0.208 0.326 0.259 0.405 0.208 0.195 0.197
CricketZ 0.246 0.128 0.142 0.313 0.156 0.246 0.277 0.263 0.408 0.187 0.187 0.149
DiatomSizeR 0.033 0.082 0.023 0.036 0.059 0.046 0.069 0.126 0.036 0.07 0.069 0.425
ECGFiveDays 0.232 0.000 0 0 0.178 0 0.055 0.183 0.03 0.015 0.045 0.001
FaceAll 0.192 0.105 0.235 0.241 0.152 0.21 0.247 0.234 0.115 0.071 0.166 0.144
FaceFour 0.17 0.091 0.000 0.034 0.091 0 0.034 0.051 0.17 0.068 0.068 0.045
FacesUCR 0.095 0.057 0.063 0.103 0.063 0.042 0.079 0.09 0.185 0.052 0.042 0.035
50words 0.31 0.191 0.19 0.367 0.180 0.301 0.288 0.209 0.288 0.321 0.273 0.211
fish 0.177 0.029 0.051 0.017 0.034 0.011 0.057 0.08 0.126 0.029 0.011 0.017
GunPoint 0.093 0.007 0.000 0 0.007 0 0.06 0.011 0.067 0 0.007 0
Haptics 0.623 0.488 0.53 0.584 0.584 0.536 0.607 0.488 0.539 0.449 0.495 0.468
InlineSkate 0.616 0.551 0.618 0.573 0.567 0.511 0.653 0.603 0.649 0.589 0.635 0.607
ItalyPower 0.05 0.036 0.030 0.086 0.039 0.053 0.053 0.096 0.034 0.03 0.04 0.037
Lightning2 0.131 0.164 0.164 0.262 0.115 0.148 0.098 0.257 0.279 0.197 0.246 0.197
Lightning7 0.274 0.247 0.219 0.288 0.233 0.342 0.274 0.262 0.356 0.137 0.164 0.164
MALLAT 0.066 0.036 0.057 0.064 0.05 0.058 0.092 0.037 0.064 0.020 0.021 0.021
MedicalImages 0.263 0.258 0.26 0.474 0.245 0.288 0.305 0.269 0.271 0.208 0.228 0.22
MoteStrain 0.165 0.085 0.079 0.115 0.114 0.073 0.113 0.135 0.131 0.050 0.105 0.109
NonInvThorax1 0.21 0.093 0.064 0.169 0.178 0.161 0.174 0.138 0.058 0.039 0.052 0.05
NonInvThorax2 0.135 0.073 0.06 0.118 0.112 0.101 0.118 0.13 0.057 0.045 0.049 0.112
OliveOil 0.167 0.1 0.133 0.133 0.133 0.1 0.133 0.090 0.6 0.167 0.133 0.2
OSULeaf 0.409 0.145 0.271 0.074 0.194 0.012 0.273 0.329 0.43 0.012 0.021 0.054
SonyAIBORobot 0.275 0.146 0.23 0.265 0.293 0.321 0.238 0.175 0.273 0.032 0.015 0.018
SonyAIBORobotII 0.169 0.076 0.07 0.188 0.124 0.098 0.066 0.196 0.161 0.038 0.038 0.034
StarLightCurves 0.093 0.031 0.023 0.096 0.079 0.021 0.093 0.022 0.043 0.033 0.029 0.028
SwedishLeaf 0.208 0.046 0.066 0.141 0.085 0.072 0.12 0.075 0.107 0.034 0.042 0.053
Symbols 0.05 0.046 0.049 0.029 0.049 0.032 0.083 0.034 0.147 0.038 0.128 0.062
SyntheticControl 0.007 0.000 0.003 0.04 0.01 0.03 0.033 0.008 0.05 0.01 0 0.003
Trace 0.000 0.01 0 0 0.01 0 0.05 0.02 0.18 0 0 0
TwoLeadECG 0.000 0.015 0.001 0.015 0 0.004 0.029 0.001 0.147 0 0 0.001
TwoPatterns 0.096 0.000 0.002 0.001 0.067 0.016 0.048 0.046 0.114 0.103 0 0
UWaveGestureLibraryAll 0.272 0.196 0.18 0.27 0.199 0.241 0.248 0.164 0.232 0.246 0.213 0.104
UWaveX 0.366 0.267 0.268 0.364 0.283 0.313 0.322 0.249 0.297 0.275 0.332 0.209
UWaveY 0.342 0.265 0.232 0.336 0.29 0.312 0.346 0.217 0.295 0.271 0.245 0.281
wafer 0.02 0.001 0.002 0.001 0.003 0.001 0.002 0.004 0.004 0.003 0.003 0.002
WordSynonyms 0.351 0.266 0.276 0.439 0.226 0.345 0.357 0.302 0.406 0.42 0.368 0.315
yoga 0.164 0.113 0.112 0.169 0.121 0.081 0.159 0.149 0.145 0.155 0.142 0.443

Wins 3 7 5 1 2 6 2 2 1 10 1 4
Average arithmetic ranking 9.273 4.42 4.761 8.295 6.523 5.534 8.477 7.409 8.807 4.727 5.034 4.739
Average geometric ranking 8.625 3.832 4.059 7.29 5.734 4.475 7.565 6.42 7.905 3.514 4.254 3.878
MPCE 0.039 0.023 0.024 0.033 0.03 0.026 0.03 0.033 0.04 0.021 0.023 0.028

43





References

[1] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Com-
putation, vol. 9, pp. 1735–1780, Nov. 1997.

[2] Y. LeCun, Y. Bengio, et al., “Convolutional networks for images, speech, and
time series,” The handbook of brain theory and neural networks, vol. 3361,
no. 10, p. 1995, 1995.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-
tion,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 770–778, 2016.

[4] R. Collobert, C. Puhrsch, and G. Synnaeve, “Wav2letter: an end-to-end
convnet-based speech recognition system,” CoRR, vol. abs/1609.03193, 2016.

[5] Z. Cui, W. Chen, and Y. Chen, “Multi-scale convolutional neural networks for
time series classification,” CoRR, vol. abs/1603.06995, 2016.

[6] Z. Wang, W. Yan, and T. Oates, “Time series classification from scratch with
deep neural networks: A strong baseline,” CoRR, vol. abs/1611.06455, 2016.

[7] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, Q. V. Le, and A. Ku-
rakin, “Large-scale evolution of image classifiers,” CoRR, vol. abs/1703.01041,
2017.

[8] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement learn-
ing,” CoRR, vol. abs/1611.01578, 2016.

[9] T. Miconi, “Neural networks with differentiable structure,” CoRR,
vol. abs/1606.06216, 2016.

[10] Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall, A. Mueen, and G. Batista,
“The ucr time series classification archive,” July 2015.

[11] E. Keogh and C. A. Ratanamahatana, “Exact indexing of dynamic time warp-
ing,” Knowledge and information systems, vol. 7, no. 3, pp. 358–386, 2005.

[12] M. G. Baydogan, G. Runger, and E. Tuv, “A bag-of-features framework to
classify time series,” IEEE Transactions on pattern analysis and machine in-
telligence, vol. 35, no. 11, pp. 2796–2802, 2013.

[13] P. Schäfer, “The boss is concerned with time series classification in the presence

45



References

of noise,” Data Mining and Knowledge Discovery, vol. 29, no. 6, pp. 1505–1530,
2015.

[14] P. Schäfer, “Scalable time series classification,” Data Mining and Knowledge
Discovery, vol. 30, no. 5, pp. 1273–1298, 2016.

[15] J. Lines and A. Bagnall, “Time series classification with ensembles of elastic
distance measures,” Data Mining and Knowledge Discovery, vol. 29, no. 3,
pp. 565–592, 2015.

[16] A. Bagnall, J. Lines, J. Hills, and A. Bostrom, “Time-series classification with
cote: the collective of transformation-based ensembles,” IEEE Transactions
on Knowledge and Data Engineering, vol. 27, no. 9, pp. 2522–2535, 2015.

[17] Y. L. Cun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in Advances
in Neural Information Processing Systems 2 (D. S. Touretzky, ed.), pp. 598–
605, San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1990.

[18] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and connec-
tions for efficient neural networks,” in Proceedings of the 28th International
Conference on Neural Information Processing Systems, NIPS’15, (Cambridge,
MA, USA), pp. 1135–1143, MIT Press, 2015.

[19] H. Kitano, “Designing neural networks using genetic algorithms with graph
generation system,” Complex systems, vol. 4, no. 4, pp. 461–476, 1990.

[20] N. Y. Nikolaev and H. Iba, “Learning polynomial feedforward neural networks
by genetic programming and backpropagation,” IEEE Transactions on Neural
Networks, vol. 14, no. 2, pp. 337–350, 2003.

[21] P. P. Palmes, T. Hayasaka, and S. Usui, “Mutation-based genetic neural net-
work,” IEEE Transactions on Neural Networks, vol. 16, no. 3, pp. 587–600,
2005.

[22] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,”
in Proceedings of the Fourteenth International Conference on Artificial Intel-
ligence and Statistics, pp. 315–323, 2011.

[23] D. E. Rumelhart, G. E. Hinton, R. J. Williams, et al., “Learning represen-
tations by back-propagating errors,” Cognitive modeling, vol. 5, no. 3, p. 1,
1988.

[24] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

46



References

[25] A. Y. Ng, “Feature selection, l 1 vs. l 2 regularization, and rotational invari-
ance,” in Proceedings of the twenty-first international conference on Machine
learning, p. 78, ACM, 2004.

[26] M. Lin, Q. Chen, and S. Yan, “Network in network,” CoRR,
vol. abs/1312.4400, 2013.

[27] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in Proceedings of the 32nd Inter-
national Conference on Machine Learning (F. Bach and D. Blei, eds.), vol. 37
of Proceedings of Machine Learning Research, (Lille, France), pp. 448–456,
PMLR, July 2015.

[28] D. Weigend, “Back-propagation, weight-elimination and time series predic-
tion,” in Proceedings 1990 Connectionist Models Summer School, pp. 105–116,
1990.

[29] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
CoRR, vol. abs/1412.6980, 2014.

[30] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasude-
van, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu,
and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015. Software available from tensorflow.org.

[31] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feed-
forward neural networks,” in Proceedings of the Thirteenth International Con-
ference on Artificial Intelligence and Statistics, pp. 249–256, 2010.

[32] K. He and J. Sun, “Convolutional neural networks at constrained time cost,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 5353–5360, 2015.

[33] M. Banko and E. Brill, “Scaling to very very large corpora for natural language
disambiguation,” in Proceedings of the 39th Annual Meeting on Association
for Computational Linguistics, ACL ’01, (Stroudsburg, PA, USA), pp. 26–33,
Association for Computational Linguistics, 2001.

47





German abstract

In nur wenigen Jahren hat Deep Learning den Bereich des maschinellen Lernens
revolutioniert. Ein sehr wichtiger Bereich ist die Zeitreihenklassifikation. Zeitrei-
hen entstehen in vielen realen Szenarien, beispielsweise als industrielle oder me-
dizinische Sensordaten. Der Erfolg des Deep Learning kann hauptsächlich auf das
Trainieren durch Rückwärtspropagierung zurück geführt werden. Trotz dieses Er-
folges kann die Rückwärtspropagierung nur für das Trainieren der Gewichte ver-
wendet werden. Da das Konfigurieren der Architektur allerdings nicht differen-
zierbar ist, ist hier eine Anwendung nicht möglich. Dies hat zur Folge, dass der
aktuelle Stand der Wissenschaft häufig auf manuell erstellte Architekturen zu-
rückgreift. Diese Abschlussarbeit zielt darauf ab, automatisch neue Architekturen
für die Zeitreihenklassifikation bei geringem Zeitaufwand zu generieren. Moderne
Lösungen der algorithmischen Erstellung solcher Architekturen verwenden meist
evolutionäre oder Methoden des bestärkenden Lernens. Diese sind in ihrer Ver-
wendung deutlich rechenintensiver. Wir lösen das Problem, indem wir eine neue
Regularisierungstechnik für neuronale Netzwerke basierend auf Faltung (CNNs)
einführen, die es ermöglicht, das Trainieren der Architektur und der Gewichte des
Netzwerkes gleichzeitig durchzuführen. Wir führen sowohl Netzwerkverbindungen,
die Operationen überspringen ein, als auch ein neuartiges zweiphasiges Training,
welches eine stabile Optimierung ermöglicht. Die Arbeit wird auf den Datensät-
zen des UCR Archivs evaluiert und zeigt konkurrenzfähige Ergebnisse zu aktuellen
Bestverfahren. Auf Datensätzen, bei denen die händisch gebaute Architektur nicht
ausreichend ist, erreicht das Verfahren bessere Werte als bisher durch andere An-
sätze erreicht.

49





Selbstständigkeitserklärung

Hiermit erkläre ich, die vorliegende Arbeit selbstständig angefertigt, nicht ander-
weitig zu Prüfungszwecken vorgelegt und keine anderen als die angegebenen Hilfs-
mittel verwendet zu haben. Sämtliche wissentlich verwendete Textausschnitte, Zi-
tate oder Inhalte anderer Verfasser wurden ausdrücklich als solche gekennzeichnet.

Potsdam, 20. Juli 2017

Louis Kirsch

51


	Introduction
	Related work
	Time series classification
	Learning the architecture of neural networks

	Background
	Fully connected neural networks and convolutional neural networks
	Differentiable number of neurons in recurrent neural networks
	FCN: The current state of the art in time series classification

	Differentiable CNN architectures
	Initial architecture
	Replacing neurons with channels
	Independent switches and the penalty function
	Training stop criteria
	Mutation phases
	Illustration of the DiffCNN
	Switched-on initialization
	Two-phased learning
	Implementation

	Experiments on UCR datasets & Discussion
	Experiment settings
	Performance evaluation
	Adapting network complexity
	Necessity of switched-on initialization
	Necessity of two-phased learning
	Experimental choice of penalty factor
	Training behavior and duration
	Complexity and scalability
	Limitations of the DiffCNN

	Conclusion & Future work
	Supplementary material for experiments
	References

