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Motivation Conclusion

General Purpcse Meta Learning « Transformers and other black-box models can be meta-

trained to act as general-purpose in-context learners

Drive advancements in - ) o ] corith )
Machine Learning via Meta | * There are phase transitions e’Eween agont. ms that
generalize, algorithms that memorize, and algorithms that

Learning j fail to meta-train at all, induced by changes in model size,
number of tasks, and meta-optimization

Enable reusability across a Meta-learned

. L i Generalize o . .
wide range of tasks AI;irr?,::?n - - The capabilities of meta-trained learning E E

algorithms are bottlenecked by the
accessible state size (memory) unlike
standard models which are thought to be
bottlenecked by parameter count

Here: Focus on memory-
based / in-context learning

What is an In-Context Learning Algorithm? Generating Tasks for Learning-To-Learn

e Meta-train multi-task

/ - across n tasks
Linear projection. e Only a single prediction head
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In supervised learning <{xl-, yi}i.\g)l,x’> =y’

Learning = Improving predictions y’ with larger D = {xl-, yi}i.\z?l

With black-box models such as LSTMs or Transformers
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Linear  Label Permutation
Hypothesis: Many diverse tasks — General-Purpose In-Context Learning-to-learn projection  Label — one-hot index
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Results

Large Sequence Models and Data , inreammcoaeaon | 1he Emergence of Learning-To-Learn

Transformer: ({xl-, yl-}i.il’l,x’) >y
Transformer

MLP: Accuracy on seen tasks 1 Accuracy on seen tasks Accuracy on unseen tasks

MLP: x" — y’ _ _ ,
Meta-test learning curve on MNIST Meta-test learning curve on FashionMNIST

o

rn-To-Learn
Learning = i Trained on
within-sequence —— mnist
improvement i —— fashion_mnist

o
>

Accuracy

o
N

o
o

1 1 T 1 1 1 T
40 60 40 60 80
S Number of examples seen Number of examples seen
o < [e0) (o] NN < O o < [eo] (] o <t
— m O Te] — m Yo} N
— AN —

Hidden size (capacity) Transformer model size Transformer model size The meta-trained GPICL learns from examples at test time, and
At a certain model size and number of tasks, the Transformer generalizes to a seemingly generalizes to unseen datasets
unbounded number of tasks

Transitioning from Memorization to Learning | Architecture: A Large State is Crucial for Learning

'Instance ] [Task

memorization][Learning to learn| LSTM The state size (accessible memory) of an architecture

. T Transformer H 1 -
— Seen MNIST - | Outer-product LSTM most strongly predicts its performance as a general

| — unseen mnisT - - VSML without symmetries  purpose learning algorithm
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Transformers exhibit _
. Seen MNIST Seen MNIST Unseen FashionMNIST
three different (seen task & seen dataset) Lo (seen task & seen dataset) (unseen task, unseen dataset)

phases in terms of
meta-learned
behavior
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Phase | Learning Generalization Algorithm Description
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® v Yes x No System identification / Task memorization

©) v/ Yes v/ Yes General-purpose learning algorithm



https://twitter.com/LouisKirschAI

