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Motivation

‣ Scaling up model size has been vital in the
   success of deep learning
‣ Necessary compute resources and training
   time grow at least linearly with model size
‣ We solve this by learning modules that are 
   conditionally executed
‣ In contrast to other approaches, we require 
   no regularization to avoid module collapse 

Results

‣ Modular networks completely avoid module
   collapse without regularization

Method - Generalized Viterbi EM

‣ The ML objective involves an intractible
   marginalization

‣ We optimize a lower bound instead
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Introducing Modular Networks

‣ A 'module' is a sub-network that can be 
   selected by the controller given some input x
‣ We devise a training algorithm that learns the 
   decomposition of a problem into modules
‣ A pool of modules is available for execution
‣ In each modular layer a set of modules a is 
   chosen by a controller 
‣ Modules have parameters 𝜃 ; controllers have 𝜙
‣ Modular layers can be stacked or used as RNNs
‣ The output y of the network is thus given by

What is module collapse?

‣ An optimization algorithm designed to pick
  from a set of modules ignores most of them

‣ Because the capacity of a few modules is 
  insufficient to learn a good solution, the 
  algorithm gets 'stuck' in a local minimum 

Module 1

The entropy of the controller 
converges to near zero, thus 
making the choice of module 
deterministic.

The entropy across the batch 
remains extremly high, thus 
using all of the modules.

‣ Modular networks can be interpreted as
   clustering datapoints that require similar
   computation together

‣ Analyzing modularization on CIFAR10 image classification
‣ Two different subsets of datapoints (top and bottom) that 
   use specific modules at the end of training (right)
‣ Datapoints in each subset start with entirely different 
   modules (left) and slowly cluster together (left to right).
‣ Sizes of nodes (modules) and stroke width of edges 
   (connected modules) describe how many datapoints of the 
   subset use these modules.
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Word-level language modeling on Penn Treebank


