Modular Networks: Learning to Decompose Neural Computation

Louis Kirsch^{1,2}, Julius Kunze¹, David Barber¹

¹Department of Computer Science, University College London ²now affiliated with IDSIA, The Swiss AI Lab

Motivation

- Scaling up model size has been vital in the success of deep learning
- Necessary compute resources and training time grow at least linearly with model size
- We solve this by learning modules that are conditionally executed
- In contrast to other approaches, we require **no regularization** to avoid module collapse

Introducing Modular Networks

- A 'module' is a sub-network that can be selected by the controller given some input **x**
- We devise a training algorithm that learns the decomposition of a problem into modules
- A pool of modules is available for execution
- In each modular layer a set of modules a is chosen by a controller $p(a|x,\phi)$
- Modules have parameters θ ; controllers have ϕ
- Modular layers can be stacked or used as RNNs
- The output y of the network is thus given by

 $p(y|x,\theta,\phi) = \sum p(y|x,a,\theta)p(a|x,\phi)$

@LouisKirschAl

Dlouiskirsch.com/libmodular

The entropy across the batch remains extremly high, thus