
Modular Networks: Learning to Decompose Neural Computation
Louis Kirsch1,2, Julius Kunze1, David Barber1

1Department of Computer Science, University College London
2now affiliated with IDSIA, The Swiss AI Lab

@LouisKirschAI

louiskirsch.com/libmodular

0 50000 100000 150000 200000
step

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

REINFORCE

EM Modular Networks

Noisy Top-k

0 50000 100000 150000 200000
step

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6 REINFORCE

EM Modular Networks

Noisy Top-k

e
n
tr

o
p
y
 o

f
m

o
d
u
le

 s
e
le

ct
io

n

e
n
tr

o
p
y
 o

f
m

o
d
u
le

 s
e
le

ct
io

n
 a

cr
o
ss

 b
a
tc

h

Motivation

‣ Scaling up model size has been vital in the
 success of deep learning
‣ Necessary compute resources and training
 time grow at least linearly with model size
‣ We solve this by learning modules that are
 conditionally executed
‣ In contrast to other approaches, we require
 no regularization to avoid module collapse

Results

‣ Modular networks completely avoid module
 collapse without regularization

Method - Generalized Viterbi EM

‣ The ML objective involves an intractible
 marginalization

‣ We optimize a lower bound instead

Data

Randomly assign
data to modules

Partial E-Step Partial M-Step

k gradient steps on

module & controller parameters

sample
mini-batch

gradient step
according to

with

sample
mini-batch

sample S compositions
per element

Reassign datapoints to
best composition

Layer

M
od

ul
e

Beginning of training Mid-training End of training

Introducing Modular Networks

‣ A 'module' is a sub-network that can be
 selected by the controller given some input x
‣ We devise a training algorithm that learns the
 decomposition of a problem into modules
‣ A pool of modules is available for execution
‣ In each modular layer a set of modules a is
 chosen by a controller
‣ Modules have parameters 𝜃 ; controllers have 𝜙
‣ Modular layers can be stacked or used as RNNs
‣ The output y of the network is thus given by

What is module collapse?

‣ An optimization algorithm designed to pick
 from a set of modules ignores most of them

‣ Because the capacity of a few modules is
 insufficient to learn a good solution, the
 algorithm gets 'stuck' in a local minimum

Module 1

The entropy of the controller
converges to near zero, thus
making the choice of module
deterministic.

The entropy across the batch
remains extremly high, thus
using all of the modules.

‣ Modular networks can be interpreted as
 clustering datapoints that require similar
 computation together

‣ Analyzing modularization on CIFAR10 image classification
‣ Two different subsets of datapoints (top and bottom) that
 use specific modules at the end of training (right)
‣ Datapoints in each subset start with entirely different
 modules (left) and slowly cluster together (left to right).
‣ Sizes of nodes (modules) and stroke width of edges
 (connected modules) describe how many datapoints of the
 subset use these modules.

Module 2

M1 M2 M3

Controller

Input

Output

Add / ConcatenateM4 M5 M6

Controller

Input

Output

Add / Concatenate

M1 M2 M3

M4 M5 M6

M4 M2 M5

Word-level language modeling on Penn Treebank

